Skip to main content

Generalization for a propositional calculus: a constraints-based approach

  • Learning
  • Conference paper
  • First Online:
EPIA 91 (EPIA 1991)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 541))

Included in the following conference series:

  • 123 Accesses

Abstract

In order to provide a propositional tableau-based theorem prover with learning capabilities, we describe generalization mechanisms that characterize the concepts of valid and non-valid formulae. Our generalization language is founded on the notion of formula schemata enriched with a system of constraints. We show how the most “attractive” generalizations of a given instance can be found. Successes or failures of proofs are handled within a same formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belleannée (C.) and Nicolas (J.). — Static learning for an adaptative theorem prover. In: Proccedings of EWSL 91 (European Working Session on Learning). pp. 298–311. — Springer-Verlag.

    Google Scholar 

  2. Gallier (J.H.). — Logic for Computer Science: Foundations of Automatic Theorem Proving. — Harper and Row, New-York, 1986.

    Google Scholar 

  3. Harmelen (van F.) and Bundy (A.). — Explanation based-generalisation = partial evaluation. Artificial Intelligence, vol. 36, 1988, pp. 401–412.

    Google Scholar 

  4. Korf. — Macro-operators: a weak method for learning. Artificial Intelligence, vol. 26, 1985, pp. 35–77.

    Google Scholar 

  5. Mackworth (A.K.). — Consistency in networks of relations. Artificial Intelligence, vol. 8, 1977, pp. 99–118.

    Google Scholar 

  6. Minton (S.N.), Carbonel (J.G.), Knoblock (C.A.), Kuokka (D.R.), Etzioni (O.) and Gil (Y.). — Explanation based learning: A problem solving perspective. Artificial Intelligence, vol. 40, 1989, pp. 63–118.

    Google Scholar 

  7. Mitchell (T.M.), Keller (R.M.) and Kedar-Cabelli (S.T.). — Explanation based learning: A unifying view. Machine Learning, vol. 1, 86, pp. 47–80.

    Google Scholar 

  8. Mitchell (T.M.). — Generalization as search. Artificial Intelligence, vol. 18, 1982, pp. 203–226.

    Google Scholar 

  9. O'Rorke (P.). — Lt revisited: Explanation-based learning and the logic of principia mathematica. Machine Learning, vol. 2, 1989, pp. 117–159.

    Google Scholar 

  10. Plotkin (G.D.). — A note on inductive generalization. Machine Intelligence, vol. 5, 1970, pp. 47–80.

    Google Scholar 

  11. Reynolds (J.C.). — Transformational systems and the algebraic structure of atomic formulas. Machine Intelligence, vol. 5, 1970, pp. 135–152.

    Google Scholar 

  12. Smullyan (R.M.). — First Order Logic. — Springer-Verlag, 1968.

    Google Scholar 

  13. Whitehead (A.N.) and Russel (A.N.). — Principia Mathematica. — Cambridge University Press, London, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pedro Barahona Luís Moniz Pereira António Porto

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vorc'h, R. (1991). Generalization for a propositional calculus: a constraints-based approach. In: Barahona, P., Moniz Pereira, L., Porto, A. (eds) EPIA 91. EPIA 1991. Lecture Notes in Computer Science, vol 541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54535-2_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-54535-2_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54535-4

  • Online ISBN: 978-3-540-38459-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics