Advertisement

Improving the time complexity of the computation of irreducible and primitive polynomials in finite fields

  • Josep Rifà
  • Joan Borrell
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)

Abstract

In this paper, we present a method to compute all the irreducible and primitive polynomials of degree m over a finite field. We also describe two concrete implementations of our method with respective time complexities O(m2 + m log m) and O(m2 + log m). These implementations, using in parallel different devices introduced to operate in these fields [1], [7], allows us to reduce the time complexity of our method below that of the best previously known methods [3]. Our algorithm is especially well-suited for applications using large finite fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.R. Berlekamp, “Bit-Serial Reed-Solomon Encoders”, IEEE Trans. on Information Theory, Vol. IT-28, pp. 869–874, Nov. 1982.Google Scholar
  2. [2]
    G.C. Clark, J.B. Cain, Error-Correcting Coding for Digital Communications, Plenum Press, New York, 1981.Google Scholar
  3. [3]
    A. Di Porto, F. Guida, E. Montolivo, “Metodi di ricerca di polinomi irriducibili e di polinomi primitivi con coefficienti in campi finiti” in Secondo Simposio su Stato e Prospettive della Ricerca Crittografica in Italia (SPRCI'89), Fondazione Ugo Bordoni, Roma, 1989.Google Scholar
  4. [4]
    R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, Cambridge, 1986.Google Scholar
  5. [5]
    P.J. MacWilliams, N.J.A. Sloane, The theory of Error Correcting Codes, North-Holland Publishing Company, Amsterdam, 1983.Google Scholar
  6. [6]
    J.L. Massey, “Shift-Register Synthesis and BCH Decoding”, IEEE Trans. on Information Theory, Vol. IT-15, pp. 122–127, Jan. 1969.Google Scholar
  7. [7]
    J.L. Massey, J.K. Omura, “Computational method and apparatus for finite field arithmetic”, U.S. Patent Application, 1981.Google Scholar
  8. [8]
    M. Morii, M. Kasahara, D.L. Whiting, “Efficient Bit-Serial Multiplication and the Discrete-Time Wiener-Hopf Equation Over Finite Fields”, IEEE Trans. on Information Theory, Vol. IT-35, pp. 1177–1183, Nov. 1989.Google Scholar
  9. [9]
    M.J. Quinn, Designing efficient algorithms for parallel computers, McGraw-Hill Book Company, 1987.Google Scholar
  10. [10]
    J.A. Thiong Ly, “Note for computing the minimum polynomial of elements in large finite fields” in Lecture Notes in Computer Science 388, Springer-Verlag, Berlin, 1989.Google Scholar
  11. [11]
    C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, I.S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in GF(2m)”, IEEE Trans. on Computers, Vol. C-34, pp. 709–717, Aug. 1985.Google Scholar
  12. [12]
    C.-S. Yeh, I.S. Reed, T.K. Truong, “Systolic Multipliers for Finite Fields GF(2m)”, IEEE Trans. on Computers, Vol. C-33, pp. 357–360, Apr. 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Josep Rifà
    • 1
  • Joan Borrell
    • 1
  1. 1.Dept. d'InformàticaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations