The Gauß lattice basis reduction algorithm succeeds with any norm

  • Michael Kaib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 529)


We generalize Gauß' definition of lattice basis reduction to an arbitrary norm and analyse the generalized version of the Gauß lattice basis reduction algorithm. We can prove that the worst-case bound established in [5] for the number of iterations of the Gauß algorithm in the euclidean norm, which is known to be the best possible in that case, holds for any norm. We prove for any norm that the norm of two consecutive vectors in the algorithm at every but the first and the last iteration decreases at least by a factor 2. We lift this result to a bound for the number of iterations of log1+√2 (B2) + 1, where B denotes the maximum of the norms of the two input vectors and λ2 denotes the second succesive minimum in the given norm. Furthermore we give two algorithms for the maximum norm ∥ ·∥ and the sum norm ∥ · ∥1 that determine the integral reduction coefficient for every iteration in the Gauß algorithm in O(n log n) arithmetic operations, where n is the dimension of the given vector space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.F. Gauss: Disquisitiones Arithmeticae. Leipzig 1801. German translation: Untersuchungen über die höhere Arithmetik. Springer, Berlin 1889. (reprint: Chelsea, New York, 1981.)Google Scholar
  2. [2]
    A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász: Factoring polynomials with rational coefficients, Math. Annalen 261 (1982), pp. 515–534.Google Scholar
  3. [3]
    L. Lovász, H. Scarf: The Generalized Basis Reduction Algorithm. Cowles Foundation Discussion Paper No. 946. New Haven 1990.Google Scholar
  4. [4]
    C.P. Schnorr: Factoring Integers and Computing Discrete Logarithms via Diophantine Approximation. Preprint Frankfurt 1990, to appear in EUROCRYPT '91.Google Scholar
  5. [5]
    B. Vallée: Gauss' Algorithm revisited. Journal of Algorithms, 1991 (to appear). Also available as: Technical Report 1989-7 of Laboratoire A3L de l'Université de Caen.Google Scholar
  6. [6]
    B. Vallée, Ph. Flajolet: The Lattice Reduction Algorithm of Gauss: An Average Case Analysis. Proc. 31st IEEE Symposium on Foundations of Computer Science, 1990, pp. 830–842.Google Scholar
  7. [7]
    B.L. van der Waerden: Die Reduktionstheorie der positiven quadratischen Formen. In: B.L. van der Waerden, H. Gross: Studien zur Theorie der Quadratischen Formen. Birkhäuser, Basel 1968, pp. 17–44.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Michael Kaib
    • 1
  1. 1.Fachbereich Mathematik/InformatikUniversität FrankfurtFrankfurt am MainWest Germany

Personalised recommendations