Nonlinear lower bounds on the number of processors of circuits with sublinear separators

  • Juraj Hromkovič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 529)


It is proved that each unbounded fan-in, fan-out Boolean circuit with O(n a )-separator for an a<1 must have Ω(n1/a) processors to compute some specific one-output Boolean functions. A nonlinear lower bound on the number of processors is achieved also for planar VLSI circuits computing some one-output Boolean functions in time O(n b ) for b<1/2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AUY83.
    Aho, A.V. — Ullman, J.D. — Yanakakis, M.: On notions of information transfer in VLSI circuits. In: Proc. 15th ACM STOC, ACM 1983, 133–139.Google Scholar
  2. Al86.
    Alon, N.: Eigenvalues and expanders. Combinatorica 6, 1986, 85–95.Google Scholar
  3. Bl84.
    Blum, N.: A Boolean function requiring 3n network size. Theoretical Computer Science 28, 1984, 337–345.Google Scholar
  4. HS73.
    Harper, L.H. — Savage, J.E.: Complexity made Simple. In: Proc. of the Intern. Symp. on Combinatorial Theory, Rome, Sept. 1973, 2–15.Google Scholar
  5. HHS75.
    Harper, L.H. — Hsieh, W.N. — Savage, J.E.: A class of Boolean functions with linear combinational complexity. Theoretical Computer Science, Vol. 1, No. 2, 1975, 161–183.Google Scholar
  6. Hr88a.
    Hromkovič, J.: The advantages of a new approach to defining the communication complexity for VLSI. Theor. Comp. Science 57, 1988, 97–111.Google Scholar
  7. Hr88b.
    Hromkovič, J.: Some complexity aspects of VLSI computations. Part 1. A framework for the study of information transfer in VLSI circuits. Computers and Artificial Intelligence 7, No. 3, 1988, 229–252.Google Scholar
  8. Hr89.
    Hromkovič, J.: Some complexity aspects of VLSI computations. Part 6. Communication complexity. Computers AI 8, No. 3, 1989, 209–225.Google Scholar
  9. KJ89.
    Kumičáková-Jirásková, G.: Chomsky hierarchy and communication complexity. J. Inf. Process. Cybern. EIK 25, No. 4, 1989, 157–164.Google Scholar
  10. KM65.
    Kloss, B.M. — Malyshev, V.A.: Bounds on complexity of some classes of functions. Vest. Mosk. Univ., Seria matem., mech., 1965, No. 4, 44–51 (in Russian).Google Scholar
  11. LT79.
    Lipton, R.J. — Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 1979, No. 2, 177–189.Google Scholar
  12. LT80.
    Lipton, R.J. — Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. on Comp. 9, 1980, 615–627.Google Scholar
  13. LRSHS88.
    Ložkin, C.A. — Rybko, A.N. — Sapoženko, A.A. — Hromkovič, J. — Škalikova, N.A.: On a approach to a bound on the area complexity of combinational circuits. In: Mathematical problems in computation theory. Banach Center Publications, Warsaw, 1988, 501–510. (in Russian), the extended version of this paper is submitted to Theor. Comp. Sci.Google Scholar
  14. Lu58.
    Lupanov, O.B.: Ob odnom metode sinteza skhem. Izv. VUZ (Radiofizika) 1, 1958, 120–140. (in Russian)Google Scholar
  15. McC85a.
    McColl, B.: On the planar monotone computation of threshold functions. In: Proc. 2nd STACS'85, Lecture Notes in Computer Science 182, Springer-Verlag 1985, 219–230.Google Scholar
  16. McC85b.
    McColl, B.: Planar circutis have short specifications. In: Proc. 2nd STACS'85, Lecture Notes in Computer Science 1982, Springer-Verlag 1985, 231–242.Google Scholar
  17. McCP84.
    McColl, B. — Paterson, M.S.: The planar realization of Boolean functions. Technical Report, University Warwick 1984.Google Scholar
  18. Pa77.
    Paul, W.J.: A 2.5n — lower bound on the combinational complexity of Boolean functions. SIAM J. Comput. 6, 1977, 427–443.Google Scholar
  19. PS84.
    Papadimitriou, Ch. — Sipser, M.: Communication complexity. J. Computer System Sci. 28, 1984, 260–269.Google Scholar
  20. Re81.
    Redkin, N.P.: Proof of minimality of circuits consisting of functional elements. Problemy kibernetiki 38, 1981, 181–216. (in Russian)Google Scholar
  21. Sa81.
    Savage, J.E.: Planar circuit complexity and the performance of VLSI algorithms. In: VLSI Syst. and Comp., Computer Science Press 1981.Google Scholar
  22. Sch74.
    Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 1974, 155–171.Google Scholar
  23. Sch80.
    Schnorr, C.P.: A 3 · n lower bound on the network complexity of Boolean functions. Theor. Comp. Science 10, 1980, 83–92.Google Scholar
  24. Sh49.
    Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Techn. J. 28, 1949, 59–98.Google Scholar
  25. So65.
    Soprunenko, E.P.: Minimal realizations of functions by circuits using functional elements. Probl. Kibernetiki 15, 1965, 117–134. (in Russian)Google Scholar
  26. St77.
    Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Math. System Theory 10, 1977, 323–336.Google Scholar
  27. Tu89.
    Turán, G.: Lower bounds for synchronous circuits and planar circuits. Infor. Proc. Lett. 130, 1989, 37–40.Google Scholar
  28. UL84.
    Ullman, J.: Computational Aspects of VLSI. Principles of Computer Science Series. Computer Science Press 1984.Google Scholar
  29. We87.
    Wegener, I.: The Complexity of Boolean functions. Wiley-Teubner Series in Computer Science, John Wiley and Sons Ltd., and B.G. Teubner, Stuttgart 1987.Google Scholar
  30. Ya81.
    Yao, A.C.: The entropic limitation of VLSI computations. In: Proc. 13th Annual ACM Symp. on Theory of Computing, ACM 1981, 308–311.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Juraj Hromkovič
    • 1
    • 2
  1. 1.Department of Computer ScienceComenius UniversityBratislavaCzechoslovakia
  2. 2.FB 17 Mathematik-InformatikUniversität-GH PaderbornPaderbornGermany

Personalised recommendations