Advertisement

Approximation algorithms for counting problems in finite fields

  • Marek Karpinski
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 529)

References

  1. [1]
    Ehrenfeucht, A., Karpinski, M., The Computational Complexity of (XOR, AND)-Counting Problems, Technical Report TR-90-031, International Computer Science Institute, Berkeley, 1990.Google Scholar
  2. [2]
    Grigoriev, D., Karpinski, M., An Approximation Algorithm for the Number of Zeros of Arbitrary Polynomials over GF[q], Technical Report TR-91-027, International Computer Science Institute, Berkeley, 1991.Google Scholar
  3. [3]
    Karp, R., Luby, M., Monte-Carlo Algorithms for Enumeration and Reliability Problems, 24th STOC, November 7–9, 1983, pp. 54–63.Google Scholar
  4. [4]
    Karp, R., Luby, M., Madras, N., Monte-Carlo Approximation Algorithms for Enumeration Problems, J. of Algorithms, 10, No. 3, Sept. 1989, pp. 429–448.Google Scholar
  5. [5]
    Karpinski, M., Boolean Circuit Complexity of Algebraic Interpolation Problems, Proc. CSL '88 Lecture Notes in Computer Science, 385 (1989), pp. 138–147.Google Scholar
  6. [6]
    Karpinski, M., Luby, M., Approximating the Number of Solutions of a GF[2] Polynomial, Proc. 2nd ACM-SIAM SODA (1991), pp. 300–303.Google Scholar
  7. [7]
    Karpinski, M., Lhotzky, B., An (ε, δ)-Approximation Algorithm for the Number of Zeros for a Multilinear Polynomial over GF[q], Technical Report TR-91-022, International Computer Science Institute, Berkeley, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Marek Karpinski
    • 1
    • 2
  1. 1.Dept. of Computer ScienceUniversity of BonnBonn 1
  2. 2.International Computer Science InstituteBerkeley

Personalised recommendations