Efficiency of Monte Carlo algorithms in numerical analysis

  • Stefan Heinrich
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 529)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.V. Aho, J. E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.Google Scholar
  2. [2]
    K.I. Babenko. Theoretical Background and Constructing of Computational Algorithms for Mathematical-Physical Problems (Russ.). Nauka, Moscow, 1979.Google Scholar
  3. [3]
    N.S. Bakhvalov. On approximate computation of multiple integrals (Russ.). Vestnik MGU, Ser. Math., Mech., Astron., Phys., Chem., 4:3–18, 1959.Google Scholar
  4. [4]
    N.S. Bakhvalov. Numerical Methods (Russ.). Mir, Moscow, 1977.Google Scholar
  5. [5]
    L. Blum, M. Shub, and S. Smale. On the theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc., 21:1–46, 1989.Google Scholar
  6. [6]
    H. Brakhage, Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numer. Math. 2:183–196, 1960.Google Scholar
  7. [7]
    K.V. Emelyanov and A.M. Ilin. On the number of arithmetic operations, necessary for the approximate solution of Fredholm integral equations of the second kind (Russ.). Zh. Vychisl. Mat. i Mat. Fiz., 7:905–910, 1967.Google Scholar
  8. [8]
    S.M. Ermakov. The Monte Carlo Method and Related Problems (Russ.). Nauka, Moscow, 1971.Google Scholar
  9. [9]
    S.M. Ermakov, W.W. Nekrutkin, and A.S. Sipin. Random Processes for the Solution of Classical Equations of Mathematical Physics (Russ.). Nauka, Moscow, 1984.Google Scholar
  10. [10]
    S. Heinrich. Complexity of randomized Galerkin solution of integral equations (in preparation).Google Scholar
  11. [11]
    S. Heinrich and J.-D. Kern. Parallel information-based complexity. J. Complexity (to appear).Google Scholar
  12. [12]
    S. Heinrich and P. Mathé. The Monte Carlo complexity of Fredholm integral equations. Math. of Computation (submitted).Google Scholar
  13. [13]
    L. LeCam. Asymptotic Methods in Statistical Design Theory, Springer Series in Statistics. Springer, Berlin, Heidelberg, New York, 1986.Google Scholar
  14. [14]
    S.M. Nikolskij. On the problem of approximation estimate by quadrature formulas (Russ.). Uspehi Mat. Nauk 5:165–177, 1950.Google Scholar
  15. [15]
    E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis. Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.Google Scholar
  16. [16]
    S.V. Pereverzev. On the complexity of the problem of finding solutions of Fredholm equations of the second kind with smooth kernels. I (Russ.), Ukrain. Mat. Zh. 40:84–91, 1988.Google Scholar
  17. [17]
    S.V. Pereverzev. Complexity estimates for the approximate solution of Fredholm equations of the second kind with differentiable kernels (Russ.). Ukrain. Mat. Sh. 41:1422–1425, 1989.Google Scholar
  18. [18]
    K.K. Sabelfeld. Monte Carlo Methods in Boundary Value Problems (Russ.). Nauka, Novosibirsk 1989.Google Scholar
  19. [19]
    A. Sard. Best approximate integration formulas; best approximation formulas. Amer. J. Math. 71:80–91, 1949.Google Scholar
  20. [20]
    V. Strassen The computational complexity of continued fractions. SIAM J. Comput., 12:1–27, 1983.Google Scholar
  21. [21]
    J.F. Traub, G.W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. Academic Press, New York, 1988.Google Scholar
  22. [22]
    A.G. Werschulz, What is the complexity of the Fredholm problem of the second kind? J. Integral Equations. 9:213–241, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Stefan Heinrich
    • 1
  1. 1.Karl-Weierstraß-Institut für MathematikBerlin

Personalised recommendations