Real space process algebra

  • J. C. M. Baeten
  • J. A. Bergstra
Selected Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 527)


We extend the real time process algebra of [BB91] to real space-time process algebra, where actions are not just parametrized by a time coordinate, but also by three spatial coordinates. We describe two versions: classical space-time, where all equations are invariant under Galilei transformations, and relativistic space-time, where all equations are invariant under Lorentz transformations. The latter case in turn splits into two subcases: the temporal interleaving model and the true concurrency model.

1980 Mathematics Subject Classification (1985 revision)

68Q45 68Q55 68Q65 68Q50 

1987 CR Categories

F.4.3 D.2.10 D.3.1 D.3.3 

Key words & Phrases

process algebra real time real space-time Galilei transformation Lorentz transformation interleaving true concurrency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BB91]
    J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of Computing 3 (2), 1991, pp. 142–188 (original version: report P8916, Programming Research Group, University of Amsterdam 1989).Google Scholar
  2. [BB90]
    J.C.M. Baeten & J.A. Bergstra, Process algebra with a zero object, in: Proc. CONCUR 90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), Springer LNCS 458, 1990, pp. 83–98.Google Scholar
  3. [BW90]
    J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in TCS 18, Cambridge University Press 1990.Google Scholar
  4. [BK84]
    J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.Google Scholar
  5. [BK85]
    J.A. Bergstra & J.W. Klop, Algebra of communicating processes with abstraction, TCS 37, 1985, pp. 77–121.Google Scholar
  6. [BK86]
    J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam 1986, pp. 61–94.Google Scholar
  7. [B21]
    M. Born, Die Relativitätstheorie Einsteins, Springer Verlag 1921.Google Scholar
  8. [He88]
    [He88] M. Hennessy, Algebraic theory of processes, MIT Press 1988.Google Scholar
  9. [H85]
    C.A.R. Hoare, Sequential communicating processes, Prentice Hall, 1985.Google Scholar
  10. [K91]
    A.S. Klusener, Completeness in real time process algebra, report CS-R9106, CWI Amsterdam 1991. Extended abstract in this volume.Google Scholar
  11. [M80]
    R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.Google Scholar
  12. [M89]
    R. Milner, Communication and concurrency, Prentice Hall, 1989.Google Scholar
  13. [P30]
    G. Peackock, A treatise of algebra, Cambridge 1830.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. C. M. Baeten
    • 1
    • 2
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Software Technology, CWIAmsterdamThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations