Advertisement

Stochastic automata and length distributions of rational languages

  • Georges Hansel
  • Daniel Krob
  • Christian Michaux
Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 520)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Allender E.W., Wagner K.W., Counting hierarchies: polynomial time and constant depth circuits, Bull. of the EATCS, 40, pp. 182–194, 1990Google Scholar
  2. [2]
    Berstel J., Reutenauer C., Rational series and their languages, Springer Verlag, 1988Google Scholar
  3. [3]
    Eilenberg S., Automata, Languages and Machines, Vol. 1, Academic Press, 1974Google Scholar
  4. [4]
    Feller W., An introduction to probability theory and its applications, Vol. 1, Wiley, 1968Google Scholar
  5. [5]
    Lang S., Algebra, Addison-Wesley, 1965Google Scholar
  6. [6]
    Niwinski D., [in “Logics and recognizable sets”, Report on the Workshop ESPRIT — ASMICS No 3166, Dersau, Germany, October 8–10, 1990], p. 24, 1990Google Scholar
  7. [7]
    Rabin M.O., Probabilistic automata, Inf. and Control, 6, pp. 230–245, 1963Google Scholar
  8. [8]
    Salomaa A., Soittola M., Automata-theoretic aspects of formal power series, Springer Verlag, 1978Google Scholar
  9. [9]
    Torán J., An oracle characterization of the counting hierarchy, [in “Proc. 3rd Annual Conference on Structure in Complexity Theory”], pp. 213–223, IEEE Computer Soc., Washington, 1988Google Scholar
  10. [10]
    Turakainen P., On probabilistic automata and their generalizations, Ann. Acad. Scient. Fennicae, Series A, 429, pp. 7–53, Helsinki, 1969.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Georges Hansel
    • 1
  • Daniel Krob
    • 2
  • Christian Michaux
    • 3
  1. 1.Université de Rouen — Laboratoire d'Informatique de RouenMont Saint-Aignan CedexFrance
  2. 2.Université de Rouen and CNRS(LITP) — Laboratoire d'Informatique de RouenUniversité Paris 6Mont Saint-Aignan CedexFrance
  3. 3.Université de Mons-HainautMonsBelgique

Personalised recommendations