Multiplicative character sums and non linear geometric codes

  • Marc Perret
Section 3 Geometric Codes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)


Let q be a power of a prime number, Fq the finite field with q elements, n an integer dividing q−1, n≥2, and χ a character of order n of the multiplicative group F*q. If X is an algebraic curve defined over Fq and if G is a divisor on X, we define a non linear code Γ(q, X, G, n, χ) on an alphabet with n+1 letters. We compute the parameters of this code, through the consideration of some character sums.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Goppa, V. D. Algebraico-geometric codes, Math. USSR Izv., 21 (1983), pp.75–91.Google Scholar
  2. [2]
    Lachaud, G. Artin-Schreier curves, exponential sums and the Carlitz-Uchiyama bound for geometric codes, accepted in Jour. of Number Theory.Google Scholar
  3. [3]
    Perret, M. Multiplicative Character Sums and Kummer Coverings, accepted in Acta Arithmetica.Google Scholar
  4. [4]
    Perret, M. Non linear geometric codes, in preparation.Google Scholar
  5. [5]
    Serre, J. P. Nombre de points des courbes algébriques sur F q, Sém de Theorie des Nombres de Bordeaux 1982/83, no 22 = Œuvres, no 129, vol. III, pp. 664–668, Springer, New york 1986.Google Scholar
  6. [6]
    Tietäväinen, A. Character sums and applications of coding theory, Ann. Univ. Turkuensis, Ser. A I, 186 (1984), pp. 110–117.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Marc Perret
    • 1
  1. 1.Equipe CNRS “Arithmetique & Théorie de l'Information”Marseille Cedex 9France

Personalised recommendations