Unidirectional error detecting codes

  • Gérard D. Cohen
  • Luisa Gargano
  • Ugo Vaccaro
Section 2 Combinatorial Codes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)


A fixed-length binary code is called t-unidirectional error detecting if no codeword can be transformed into another codeword by at most t unidirectional errors. In this paper we consider the problem of mapping information sequences of length k into code-words of a t-unidirectional error detecting code of length k+p. In case of systematic codes we show that the parameters p and i must satisfy the relation t≤2p −2p/2+1+p. Moreover, we give a simple systematic encoding to map information sequences into codewords of a t-unidirectional error detecting code. In case of non-systematic codes, we give a method to design t-unidirectional error detecting codes in which the number p of check bits must satisfy the inequality t≤2 p p−1. The encoding and decoding algorithms require time linear in the number k of information bits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Al-Bassan and B. Bose, “On Balanced Codes”, IEEE Int. Symp. Inform. Theory, Japan, June 1988.Google Scholar
  2. [2]
    S. Al-Bassan and B. Bose “Design of Efficient Balanced Codes”, 19th Int. Symp. on Fault-Tolerant Computing, Chicago, Ill., 1989.Google Scholar
  3. [3]
    J. M. Berger, “A Note on Error Detecting Codes for Asymmetric Channel”, Information and Control, vol. 4, pp. 68–73, 1961.CrossRefGoogle Scholar
  4. [4]
    J. M. Borden, “Optimal Asymmetric Error Detecting Codes”, Information and Control, vol. 53, pp. 66–73, 1982.CrossRefGoogle Scholar
  5. [5]
    B. Bose, “On Unordered Codes”, 17th Int. Symp. on Fault-Tolerant Computing, Pittsburgh, Penn., pp. 102–107, 1987.Google Scholar
  6. [6]
    B. Bose and D. J. Lin, “Systematic Unidirectional Error-Detecting Codes”, IEEE Trans. Comp., vol. C-34, pp. 1026–1032, 1985.Google Scholar
  7. [7]
    R. M. Capocelli, L. Gargano, G. Landi and U. Vaccaro, “Improved Balanced Encodings”, IEEE International Symposium on Information Theory, San Diego, USA, 1990.Google Scholar
  8. [8]
    R. M. Capocelli, L. Gargano and U. Vaccaro, “An Efficient Algorithm to Test Immutability of Variable Length Codes”, IEEE Trans. Inform. Theory, vol. IT-35, pp. 1310–1314, 1989.CrossRefGoogle Scholar
  9. [9]
    R. M. Capocelli, L. Gargano and U. Vaccaro, “Efficient q-ary Immutable Codes”, Discrete Applied Math., to appear.Google Scholar
  10. [10]
    R. W. Cook, W. H. Sisson, T. G. Stoney, and W. N. Toy, “Design of Self-Checking Microprogram Control”, IEEE Trans. Comput., vol. C-22, pp. 255–262, 1973.Google Scholar
  11. [11]
    C. V. Freiman, “Optimal Error Detecting Codes for Completely Asymmetric Binary Channels”, Information and Control, vol. 5, pp. 64–71, 1962.CrossRefGoogle Scholar
  12. [12]
    P. Godlewski and G. D. Cohen “Some Cryptographic Aspects of Womcodes”, Proceedings of CRYPTO '85, Lecture Notes in Computer Science, Springer Verlag, 1985.Google Scholar
  13. [13]
    J. R. Griggs, “Saturated Chains of Subsets and a Random Walk”, Journal of Combinatorial Theory, Series A, vol. 47, pp. 262–283, 1988.CrossRefGoogle Scholar
  14. [14]
    D. E. Knuth, The Art of Computer Programming, Vol. 1, pp. 70 and 486, Addison-Wesley, Reading, Mass., 1968.Google Scholar
  15. [15]
    D. E. Knuth, “Efficient Balanced Codes”, IEEE Trans. Inform. Theory, vol. IT-32, pp. 51–53, 1986.CrossRefGoogle Scholar
  16. [16]
    E. L. Leiss, “Data Integrity on Digital Optical Discs”, IEEE Trans. Computers, vol. C-33, pp. 818–827, 1984.Google Scholar
  17. [17]
    E. L. Leiss, “On Codes which are Unchangeable under Given Subversions”, J. Combin. Inform. & Syst. Sci., vol. 10, pp. 91–109, 1985.Google Scholar
  18. [18]
    E. L. Leiss, “On Testing for Immutability of Codes”, IEEE Trans. Inform. Theory, vol. IT-33, pp. 934–938, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Gérard D. Cohen
    • 1
  • Luisa Gargano
    • 2
  • Ugo Vaccaro
    • 2
  1. 1.Ecole Nationale Supérieure des TelecommunicationsParis Cedex 13France
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (SA)Italy

Personalised recommendations