Advertisement

A direct proof for the automorphism group of reed solomon codes

  • Thierry Berger
Section 1 Algebraic Codes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)

Abstract

We introduce a special basis for the description of the primitive extended cyclic codes, considered as subspaces of the modular algebra A=GF(pm)[GF(pm)]. Using properties of this basis, we determine the automorphism group of some extended cyclic codes, among the extended Reed Solomon codes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.Berger & P.Charpin The automorphism group of the generalized Reed Muller codes Rapport INRIA, to appear.Google Scholar
  2. [2]
    T.Berger Sur le groupe d'automorphismes des codes cycliques étendus primitifs affine-invariants Thèse de l'Université de Limoges, in preparation.Google Scholar
  3. [3]
    P.Charpin The extended Reed Solomon codes considered as ideals of a modular algebra Annals of Discrete Mathematics. 17(1983)171.176.Google Scholar
  4. [4]
    P.Charpin Codes cycliques étendus invariants sous le groupe affine Thèse de Doctorat d'Etat, Université Paris VII, LITP (1987).Google Scholar
  5. [5]
    A.Dür The automorphism group of Reed Solomon codes J. of Combinatorial Theory, serie A, vol.44, no1 (1987).Google Scholar
  6. [6]
    T. Kasami, S. Lin &W.W. Peterson Some results on cyclic codes which are invariant under the affine group and their applications Info. and Control, vol 11, p475–496 (1967).CrossRefGoogle Scholar
  7. [7]
    F.J.Macwilliams & N.J.A.Sloane The theory of error correcting codes North-Holland (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Thierry Berger
    • 1
  1. 1.Département de MathématiquesFaculté des Sciences de LimogesLimoges CedexFrance

Personalised recommendations