Two P-complete problems in the theory of the reals

  • F. Cucker
  • A. Torrecillas
Algorithms (Session 13)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 510)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.V. Aho, J.E. Hopcroft and J.D. Ullman; The design and analysis of computer algorithms. Addison-Wesley, Reading, Mass., 1974.Google Scholar
  2. [2]
    J.L. Balcázar, J. Díaz and J. Gabarró; Structural Complexity. vol. 2, EATCS Monographs of Theoretical Computer Science, Springer Verlag, 1990.Google Scholar
  3. [3]
    M. Ben-Or; “Lower bounds for algebraic computation trees”. A.C.M. Symp. on Theory of Computing 5, pp.80–86, 1988.Google Scholar
  4. [4]
    L. Blum, M. Shub and S. Smale; “On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines”. Bulletin of the Amer. Math. Soc.., vol.21, n.1, pp.1–46, 1989.Google Scholar
  5. [5]
    J. Bochnak, M. Coste and M.-F. Roy; Géométrie algébrique réelle. Ergebnisse der Math., 3.Folge, Band 12, Springer Verlag, 1987.Google Scholar
  6. [6]
    J. von zur Gathen; “Parallel arithmetic computations: a survey”, Proc. 12 th Int. Symp. Math. Found. Comp. Sc., LNCS 233, pp.93–112, Springer Verlag, 1986.Google Scholar
  7. [7]
    J. von zur Gathen; “Algebraic complexity theory”, Ann. Rev. Comput. Sci., 3, pp.317–347, 1988.Google Scholar
  8. [8]
    N.D. Jones and W.T. Laaser; “Complete problems for deterministic polynomial time”, Theor. Comp. Sc. 3, pp.105–117, 1977.Google Scholar
  9. [9]
    F.P. Preparata and M.I. Shamos; Computational Geometry: an introduction. Texts and Monographs in Computer Science, Springer Verlag, 1985.Google Scholar
  10. [10]
    L.J. Stockmeyer and U. Vishkin; “Simulation of parallel random access machines by circuits”, SIAM J. on Comp. 13, pp.409–422, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. Cucker
    • 1
  • A. Torrecillas
    • 2
  1. 1.Dept. L.S.I.Univ. Politècnica de CatalunyaBarcelonaSpain
  2. 2.Dept. Matemàtica Aplicada IIUniv. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations