A parallel algorithm for two processors precedence constraint scheduling

  • Hermann Jung
  • Maria Serna
  • Paul Spirakis
Parallel Algorithms (Session 10)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 510)


We present a new parallel algorithm for the two processors scheduling problem. The algorithm uses only O(n3) processors and takes time O(log2n) time on a PRAM. In order to prove the above bounds we show how to compute in NC the lexicographically first matching for a special kind of convex bipartite graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. J. Atallah, P. Callaham, and M. T. Goodrich. P-complete geometric problems. SPAA 90 Google Scholar
  2. [2]
    E. G. Coffman, and R. L. Graham. Optimal scheduling for two processors systems. Acta Informatica, 1:200–213, 1972.Google Scholar
  3. [3]
    E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM Journal of computing, 10:657–675, 1981.Google Scholar
  4. [4]
    M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent processors. SIAM Journal of computing, 17:784–789, 1969.Google Scholar
  5. [5]
    H. N. Gabow. An almost linear time algorithm for two processors scheduling. Journal of the ACM, 29(3):766–780, 1982.Google Scholar
  6. [6]
    M. R. Garey, and D. S. Johnson. Computers and Intractability: A Guide to the theory of NP completeness. Freeman, San Francisco, 1979.Google Scholar
  7. [7]
    D. Hembold, and E. Mayr. Two processor scheduling is in NC. AWOC 86, pp. 12–25, 1986.Google Scholar
  8. [8]
    J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System Sciences, 10:384–393, 1975.Google Scholar
  9. [9]
    U. V. Vazirani, and V. V. Vazirani. The two processor scheduling is in RNC. STOC 85, pp. 11–21, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Hermann Jung
    • 1
  • Maria Serna
    • 2
  • Paul Spirakis
    • 3
  1. 1.Sektion MathematikHumboldt UniversitätBerlinGermany
  2. 2.Dept. de Llentguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Computer Technology InstitutePatrasGreece

Personalised recommendations