Towards a categorical data model supporting structured objects and inheritance

  • S. K. Lellahi
  • N. Spyratos
Formal Foundations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 504)


We propose a data model in which the data scheme, the data domain and the database are defined using the concepts of graph, category and diagram, respectively, and in which the limit of a diagram plays an essential role. Our model incorporates important concepts of known database models (such as structured objects and inheritance) and provides new insights into these models.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AtBa89]
    M. Atkinson, F. Bancilhon et al. The Object-Oriented Database System Manifesto. Proc. of the First International Conference on Deductive and Object-Oriented Database. Kyoto Japan (1989).Google Scholar
  2. [BaWe90]
    M. Barr, C. Wells. Category for Computing Science. Prentice Hall (1990).Google Scholar
  3. [BuFr79]
    O.P. Buneman, R.E. Frankel. FQL-A Functional Query Language. Proc. ACM SIGMOD int. Conf. On the Management of Data. Boston Mass. 1979.Google Scholar
  4. [Card84]
    L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types LNCS 173 (1984), 51–68.Google Scholar
  5. [CoKo86]
    G. Copeland, S. Koshafian. Object Identity. Proc. of the 1st ACM OOPSLA Conference. Portland Oregon 1986.Google Scholar
  6. [Hone82]
    P. Honeyman. Testing satisfaction of functional dependencies. J. ACM 29:3 (1982), 668–677.Google Scholar
  7. [Kim90]
    W. Kim. Object-Oriented Database: Definition and Research Directions. IEEE Transactions on Knowledge and Data Engineering vol. 2 No. 3 (1990), 327–341.Google Scholar
  8. [LaSc86]
    J. Lambeck, P.J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press 1986.Google Scholar
  9. [Lell87]
    S.K. Lellahi. Types Abstraits Catégoriques: Une Extension des Types Abstraits Algébriques. Laboratoire Informatique des Systèmes Exprimentaux et leur Modélisation (ISEM). Univ. Paris-Sud(Orsay). Research Report no 063 (1987).Google Scholar
  10. [Maie83]
    D. Maier. The Theory of Relational Databases. Pitman 1983.Google Scholar
  11. [Maie89]
    D. Maier. Why isn't there an Object-Oriented Data Model?. Technical Report. Oregeon Graduate Center May 1989.Google Scholar
  12. [RyBu88]
    D.E. Rydehard, R.M. Burstall. Computational Category theory. Prentice Hall. 1988.Google Scholar
  13. [Sagi83]
    Y. Sagiv. A Characterization of Globally consistent Databases and their correct access paths. ACM TODS 8 (1983), 266–286.Google Scholar
  14. [Schm86]
    D.A. Schmidt. Denotational Semantics, A Methodology for Language Development. Wm. C. Brown Publisher, 1986.Google Scholar
  15. [Ship81]
    D.W. Shipman. The functional Data Model and the Language Daplex. ACM TODS 4 (1981), 493–517.Google Scholar
  16. [ThFi86]
    S.J. Thomas, P.C. Fischer. Nested Relational Structures. Advances in Computing Research III. The Theory of Databases, P.C. Kanellakis (ed.) JAIpress 1986, 269–307.Google Scholar
  17. [Ullm88]
    J.D. Ullman. Database and Knowledge-base Systems Vol. I. Computer Science Press, 1988.Google Scholar
  18. [Ullm89]
    J.D. Ullman. Database and Knowledge-base Systems Vol. II. Computer Science Press, 1989.Google Scholar
  19. [WoKi87]
    D. Woelk, W. Kim. Multimedia Information Management in an Object-Oriented Database System. Proceedings of 13th VLDB (1987), 319–329.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • S. K. Lellahi
    • 1
  • N. Spyratos
    • 1
  1. 1.LRI-Bât. 490Université de Paris-Sud et CNRSOrsay CedexFrance

Personalised recommendations