Advertisement

A time-randomness tradeoff for communication complexity

  • Rudolf Fleischer
  • Hermann Jung
  • Kurt Mehlhorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 486)

Abstract

We present a tight tradeoff between the expected communication complexity \(\bar C\)and the number R of random bits used by any Las Vegas protocol (for a two-processor system) for the list-disjointness function of two lists of n numbers of n bits each. This function evaluates to 1 if and only if the two lists correspond in at least one position. We show a log(n2/\(\bar C\)) lower bound on the number of random bits used by any Las Vegas protocol, Ω(n) ≤ \(\bar C\)O(n2). We also show that expected communication complexity \(\bar C\), Ω(n log n) ≤ \(\bar C\)O(n2), can be achieved using no more than (1+o(1)) log(n2/\(\bar C\)) random bits.

Keywords

Boolean Function Failure Probability Communication Complexity Deterministic Algorithm Probabilistic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AUY]
    A.V. Aho, J.D. Ullman, M. Yannakakis ”On notions of information transfer in VLSI circuits” Proc. 15th ACM STOC 1983, 133–139Google Scholar
  2. [CG]
    R. Canetti, O. Goldreich ”Bounds on tradeoffs between randomness and communication complexity” to appear in FOCS 1990Google Scholar
  3. [F87]
    M. Fürer ”The power of randomness for communication complexity” Proc. 19th ACM STOC 1987, 178–181Google Scholar
  4. [F89]
    R. Fleischer “Communication complexity of multi processor systems” IPL 30 (1989), 57–65Google Scholar
  5. [G72]
    K.-B. Gundlach ”Einführung in die Zahlentheorie BI Bd. 772, 1972Google Scholar
  6. [H86]
    B. Halstenberg ”Zweiprozessorkommunikationskomplexität” Diplomarbeit University of Bielefeld 1986Google Scholar
  7. [HR87]
    B. Halstenberg, R. Reischuk ”Relations between communication complexity classes” Proc. 3rd Structure Conference 1988 Google Scholar
  8. [HR88]
    B. Halstenberg, R. Reischuk ”On different modes of communication” Proc. 20th ACM STOC 1988, 162–172Google Scholar
  9. [HW]
    Hardy & Wright ”An Introduction to the Theory of Numbers” 5th edition, Oxford 1979Google Scholar
  10. [KPU]
    D. Krizanc, D. Peleg, E. Upfal ”A time-randomness tradeoff for oblivious routing” Proc. 20th ACM STOC 1988, 93–102Google Scholar
  11. [KY]
    D.E. Knuth, A.C Yao ”The complexity of nonuniform random number generation” in Algorithms and Complexity, Ed. J.E. Traub, Academic Press N.Y., 1976, 357–428Google Scholar
  12. [LS81]
    R.J. Lipton, R. Sedgewick ”Lower bounds for VLSI” Proc. 13th ACM STOC 1981, 300–307Google Scholar
  13. [LS88]
    L. Lovász, M. Saks ”Lattices, möbius functions and communication complexity” Proc. 29th IEEE FOCS 1988, 81–90Google Scholar
  14. [MS]
    K. Mehlhorn, E.M. Schmidt ”Las Vegas is better than determinism in VLSI and distributed computing” Proc. 14th ACM STOC 1982, 330–337Google Scholar
  15. [PS]
    C.H. Papadimitriou, M. Sipser ”Communication complexity” Proc. 14th ACM STOC, 1982, 196–200 Journal of Computer and System Sciences 28, 1984, 260–269Google Scholar
  16. [RS]
    P. Raghavan, M. Snir ”Memory versus randomization in on-line algorithms” ICALP 1989, 687–703Google Scholar
  17. [Y77]
    A.C. Yao ”Probabilistic computations: toward a unified measure of complexity” Proc. 18th IEEE FOCS 1977, 222–227Google Scholar
  18. [Y79]
    A.C. Yao ”Some complexity questions related to distributive computing” Proc. 11th ACM STOC 1979, 209–213Google Scholar
  19. [Y83]
    A.C. Yao ”Lower bounds by probabilistic arguments” Proc. 24th IEEE FOCS 1983, 420–428Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Rudolf Fleischer
    • 1
  • Hermann Jung
    • 2
  • Kurt Mehlhorn
    • 1
  1. 1.Department of Computer ScienceUniversity of SaarlandSaarbrückenGermany
  2. 2.Department of Computer ScienceHumboldt UniversityBerlinGermany

Personalised recommendations