On the representation of dependencies by propositional logic

  • Demetrovics J. 
  • Rónyai L. 
  • Hua nam Son
Integrity Constraints
Part of the Lecture Notes in Computer Science book series (LNCS, volume 495)


A semantics of propositional logic is given to describe functional dependencies (FDs) and boolean dependencies (BDs). Armstrong relations are characterized for both FDs and BDs. In the case of FDs propositional logic is applied to find Armstrong relations and keys. BDs are not Armstrong dependencies. The problem to decide if a given BD has an Armstrong relation is shown to be an NP-hard problem. For BDs keys and covers are viewed as keysets. An algorithm to find keysets is given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Arm]
    Armstrong, W.W. Dependency Structures of Database Relationships. Information Processing 74, North-Holland Pub. Co. (1974), 580–583.Google Scholar
  2. [BDFS]
    Beeri, C., Dowd, M., Fagin, R. and Statman, R. On the structure of Armstrong Relations for Functional Dependencies. J. ACM. 31 1(1984), 30–46.Google Scholar
  3. [BD]
    Békéssy, A. and Demetrovics, J. Contribution to Theory of database relation. Discrete Math. 27 (1979), 1–10.Google Scholar
  4. [BDK]
    Burosh, G., Demetrovics, J. and Katona, G. O. J. The poset of closures as a model of changing database. Order 4 (1987), 127–142.Google Scholar
  5. [DC]
    Delobel, C. and Casey, R.G. Decomposition of database and the Theory of Boolean swiching functions. IBM J. Res. Develop. 17 5(1973), 374–386.Google Scholar
  6. [Dem]
    Demetrovics, J. On the equivalence of candidate keys with Sperner systems, Acta Cybernetica 4 3 (1979), 247–252.Google Scholar
  7. [DGy]
    Demetrovics, J. and Gyepesi, Gy. Some generalized type functional dependencies formalized as equality set on matrices. Discrete Applied Mathematics 6 (1983), 35–47Google Scholar
  8. [DRH]
    Demetrovics, J., Rónyai, L. and Hua nam Son. Dependency Types. Computers Math. Applic. 21 1 (1991), 25–33.Google Scholar
  9. [Fa 1]
    Fagin, R. Functional dependencies in relational database and Propositional Logic. IBM J. Res. and Develop. 21 6(1977) 5, 534–544.Google Scholar
  10. [Fa 2]
    Fagin, R. Horn Clauses and Database Dependencies. J. ACM. 29 4 (1982), 952–985.Google Scholar
  11. [Got]
    Gottlob, G. On the size of nonredundant FD-covers. Inf. Processing Letters 24 (1987), 355–360.Google Scholar
  12. [Mai]
    Maier, D. The Theory of Relational Databases. Computer Science Press, 1983.Google Scholar
  13. [MR 1]
    Mannila, H. and Räihä, K-J. Design by Example: An Application of Armstrong Relations. JCSS 33 (1986), 126–141Google Scholar
  14. [MR 2]
    Mannila, H. and Räihä, K-J. On the complexity of inferring functional dependencies. Manuscript. 1989.Google Scholar
  15. [Sad]
    Sadri, F., Data Dependencies in the Relational Model of Data: A Generalization. Doctoral Diss., Princeton Univ., Princeton, NJ, October 1980.Google Scholar
  16. [SDPF 1]
    Sagiv, Y., Delobel, C., Parker, D.S.JR., Fagin, R., An Equivalence Between Relational Database Dependencies and a Fragment of Propositional Logic, JACM 28 3(1981), 435–453.CrossRefGoogle Scholar
  17. [SDPF 2]
    Sagiv, Y., Delobel, C., Parker, D.S.JR., Fagin, R., Correction to “An Equivalence Between Relational Database Dependencies and a Fragment of Propositional Logic”, JACM 34 4(1987), 1016–1018.Google Scholar
  18. [Sch]
    Schöning, U., Logic for Computer Scientists, Birkhäuser, 1989.Google Scholar
  19. [Thal 1]
    Thalheim, B., Funktionale Abhängigkeiten in relationalen Datenstrukturen. EIK, 1985, 1/2, 23–33.Google Scholar
  20. [Thal 2]
    Thalheim, B., Design tools for large relational database systems. MTA SZTAKI Közlemények 37 (1987), 171–183.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Demetrovics J. 
    • 1
  • Rónyai L. 
    • 1
  • Hua nam Son
    • 1
  1. 1.Computer and Automation InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations