Advertisement

On the analysis and synthesis of free choice systems

  • Javier Esparza
  • Manuel Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 483)

Abstract

This invited paper present in a semi-formal illustrative way several new results concerning the analysis and synthesis of free choice systems. It is a complementary work of the survey by E. Best [Best 87]. In the analysis part, we characterize liveness and boundedness in linear algebraic terms. As a consequence of the new characterizations, both properties are shown to be decidable (as a whole) in polynomial time. We also provide two different kits of sound and complete reduction rules (the one reverse-dual of the other).

We address then the problem of synthezising live and bounded free choice systems within the two basic design methodologies: top-down and modular (synthesis by composition of modules). Two complete kits of top-down synthesis rules are provided. They are essentially the reduction kits obtained before, but this time considered in the reverse direction. The completeness of the kits can be used to prove new results (or give new proofs of old results) using structural induction on the chain of applications of the rules that synthezise a given system. In the modular approach, exact conditions for the preservation of liveness and boundednes under compositions of systems are given. These conditions are the absence of certain design errors, called killing choices, killing joints, synchronic mismatches and state mismatches. They help to understand why a certain system is not well behaved.

Keywords

Analysis free choice nets linear algebra techniques reduction state refinement structure of systems modular synthesis top-down synthesis transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bert 87]
    Berthelot, G. 1987: Transformations and Decompositions of Nets. In [BRR 87], LNCS 254, pp. 359–376.Google Scholar
  2. [BRR 87]
    Brauer, W.; Reisig, W.; Rozenberg, G.; (eds.) 1987: Advanced Course on Petri Nets, Lecture Notes on Computer Science 254 and 255, Springer-Verlag, Berlin.Google Scholar
  3. [Best 87]
    Best, E. 1987: Structure Theory of Petri Nets: the Free Choice Hiatus. In [BRR 87], LNCS 254, pp. 168–205.Google Scholar
  4. [BV 84]
    Best, E.; Voss, K. 1984: Free Choice Systems Have Home States. Acta Informatica 21, pp. 89–100.Google Scholar
  5. [BT 87]
    Best, E.; Thiagarajan, P.S. 1987: Some Classes of Live and Save Petri Nets. Concurrency and Nets (Voss, K.; Genrich, H.J., Rozenberg, G., eds.), Springer-Verlag, Berlin, pp. 71–94.Google Scholar
  6. [BD 90]
    Best, E.; Desel, J. 1990: Partial Order Behaviour and Structure of Petri Nets. Formal Aspects of Computing, FACS-Vol 2, No. 2, pp. 123–138.Google Scholar
  7. [BCDE 90]
    Best, E.; Chersakova, L.; Desel, J.; Esparza, J.: Characterization of Home States in Free Choice Systems. Hildesheimer Informatik-Berichte Nr. 7/90 (July).Google Scholar
  8. [CCS 90a]
    Campos, J.; Chiola, G.; Silva, M.: Properties and Performance bounds for closed free choice Synchronized Monoclass Queueing Networks. Departamento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza, Research Report 90.02, January (27 pages).Google Scholar
  9. [CCS 90b]
    Colom, J.M.; Campos, J.; Silva, M.: On liveness analysis through linear algebraic techniques. Departmento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza, Research Report GISI 90.10, June (17 pages)Google Scholar
  10. [CHEP 71]
    Commoner, F.; Holt, A. W.; Even, S.; Pnueli, A. 1971: Marked Directed Graphs. Journal of Computer and System Sciences, Vol. 9, No. 2, pp. 72–79.Google Scholar
  11. [CS 89a]
    Colom, J.M.; Silva, M.: Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal p-semiflows. Proceedings of the Xth International Conference on Application and Theory of Petri nets, June, Bonn, pp. 74–95.Google Scholar
  12. [CS 89b]
    Colom, J.M.; Silva, M.: Improving the linearly based characterization of P/T nets. Proceedings of the Xth Int. Conf. on Application and Theory of Petri nets, June, Bonn, pp. 52–73.Google Scholar
  13. [Des 90]
    Desel, J. 1990: Reduction and Design of Well-behaved Concurrent Systems. Proceedings of CONCUR'90 (Baeten, J.C.M.; Klop, J.W.; eds.). Amsterdam, August, LNCS 458, Springer-Verlag, Berlin, pp. 166–181.Google Scholar
  14. [DE 90]
    Desel, J.; Esparza, J.: Reachability in Reversible Free-choice Systems. Technical University of Münich, SFB-Bericht Nr 342/11/90A, June.Google Scholar
  15. [Espa 90a]
    Esparza, J. 1990: Synthesis rules for Petri Nets, and how they lead to new results. Proceedings of CONCUR'90 (Baeten, J.C.M.; Klop J.W., eds.), Amsterdam, August. LNCS 458, Springer-Verlag, Berlin, pp. 182–198.Google Scholar
  16. [Espa 90b]
    Esparza, J.: Structure Theory of Free Choice nets. Ph. D. thesis, Departamento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza, June.Google Scholar
  17. [EBS 89]
    Esparza, J.; Best, E.; Silva, M.: Minimal deadlocks in Free Choice Nets. Departamento de Ingeniería Eléctrica e Informática, Research Report GISI 80.07, March (16 pages). Also: Hildesheimer Informatik Fachberichte, 89/1.Google Scholar
  18. [ES 89a]
    Esparza, J.; Silva, M.: Circuits, Handles, Bridges and Nets. Proceedings of the Xth Int. Conf. on Application and Theory of Petri nets, June, Bonn, pp. 134–153.Google Scholar
  19. [ES 89b]
    Esparza, J.; Silva, M.: A polynomial time algorithm to decide liveness of bounded free choice nets. Departmento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza, Research Report GISI 89.04, May (28 pages). To appear in Theoretical Computer Science.Google Scholar
  20. [ES 90a]
    Esparza, J.; Silva, M.: Top-down Synthesis of Live and Bounded Free Choice nets. Proceedings of the XIth. International Conference on Application and Theory of Petri nets. Paris, June, pp.–.Google Scholar
  21. [ES 90b]
    Esparza, J.; Silva, M.: Modular Synthesis of free-choice nets. Departamento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza, Research Report GISI 90.06, March (29 pages).Google Scholar
  22. [ES 90c]
    Esparza, J.; Silva, M.: Free Choice nets, a Rank Theorem and its Consequences. To appear.Google Scholar
  23. [Fink 90]
    Finkel, A.: A minimal coverability graph for Petri Nets. Proceedings of the XIth Int. Conf. on Applications and Theory of Petri Nets. Paris, June.Google Scholar
  24. [GL 73]
    Genrich, H.J.; Lautenbach, K. 1973: Synchronisationsgraphen. Acta Informatica 2, pp. 143–161.Google Scholar
  25. [GT 89]
    Goldfarb, D.; Todd, M.J. 1989: Linear Programming. In Optimization (G.L. Nemhauser et al eds.), North Holland, Amsterdam, pp. 73–170.Google Scholar
  26. [Hack 72]
    Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Cambridge, Mass.: MIT, Dept. Electrical Engineering, MS Thesis (1972). Corrected June 1974Google Scholar
  27. [Hill 85]
    Hillen, D.: Relationship between Deadlock-freeness and Liveness in Free Choice Nets. Newsletter of the GI Special Interest Group in Petri Nets and Related System Models, No. 19, pp. 28–32.Google Scholar
  28. [JLL 77]
    Jones, N.D.; Landweber, L.H.; Lien, Y.E. 1977: Complexity of Some Problems in Petri Nets. Theoretical Computer Science 4, pp. 277–299.Google Scholar
  29. [Karm 84]
    Karmarkar, N. 1984: A new polynomial-time algorithm for linear programming. Combinatorica, Vol. 4, pp. 373–395.Google Scholar
  30. [Laut 87a]
    Lautenbach, K. 1987: Linear Algebraic Techniques for Place/Transition Nets. In [BRR 87], LNCS 254, pp. 142–167.Google Scholar
  31. [Laut 87b]
    Lautenbach, K. 1987: Linear Algebraic Calculation of Deadlock and Traps. Concurrency and Nets (Voss, K.; Genrich, H.J., Rozenberg, G.; eds.), Springer-Verlag, Berlin, pp. 315–336.Google Scholar
  32. [MR 80]
    Memmi, G.; Roucairol, G.: Linear Algebra in Net Theory. Net Theory and Applications. (Brauer, W.; ed.), LNCS 84, Springer Verlag, Berlin, pp. 213–223.Google Scholar
  33. [Mura 89]
    Murata, T. 1989: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, Vol. 77, No. 4, April, pp. 540–580.Google Scholar
  34. [Sifa 78]
    Sifakis, J.: Structural Properties of Petri nets. Mathematical Foundations of Computer Science 1978 (Winkowski, J.; ed.), Springer-Verlag, Berlin, pp. 474–483.Google Scholar
  35. [Silv 81]
    Silva, M. 1981: Sur le Concept de Macroplace et son Utilisation pour l'Analyse des Reseaux de Petri. RAIRO-Systems Analysis and Control, Vol. 15, No. 4, pp. 335–345.Google Scholar
  36. [Silv 85]
    Silva, M.: Las redes de Petri: en la Automática y la Informática. Editorial AC, Madrid.Google Scholar
  37. [Silv 87]
    Silva, M. 1987: Towards a Synchrony Theory for P/T Nets. Concurrency and Nets (Voss, K.; Genrich, H.J., Rozenberg, G.; eds.), Springer-Verlag, Berlin, pp. 315–336.Google Scholar
  38. [SC 87]
    Silva, M.; Colom, J.M. 1987: On the computation of Structural Synchronic Invariants in P/T nets. Advances in Petri Nets'87 (G. Rozenberg, ed.), LNCS 340, Springer-Verlag, Berlin, pp. 306–417.Google Scholar
  39. [TV 84]
    Thiagarajan, P.S.; Voss, K. 1984: A Fresh look at free Choice Nets. Information and Control, Vol. 61, No. 2, May, pp. 85–113.Google Scholar
  40. [Vogl 89]
    Vogler, W.: Live and Bounded Free Choice Nets have Home States. Newsletter of the GI Special Interest Group in Petri Nets and Related System Models, No. 32, pp. 18–21.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Javier Esparza
    • 1
  • Manuel Silva
    • 2
  1. 1.Institut für InformatikUniversität HildesheimHildesheimGermany
  2. 2.Depto. Ingeniería Eléctrica e InformáticaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations