Model-based knowledge acquisition

  • Angi Voß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 474)


There are two knowledge engineering traditions, rapid prototyping and conceptual modelling which can further be distinguished into universal and shell-based approaches. Underlying the two traditions are two different hypotheses explaining the knowledge acquisition bottleneck. Model-based approaches try to tackle it by searching for a set of basic, generic problem solving methods that can be combined and instantiated for various applications. KADS is introduced as a universal conceptual modelling approach and it is compared with three prominent shell-based ones. Summarizing, knowledge engineering will be compared to software engineering which will suggest to view knowledge acquisition as a workbench of methods and techniques that are special to the former.

The paper will close with the insights I gained on the workshop about the relevance of knowledge engineering for data base engineering, and vice versa.


Software Engineering Rapid Prototype Knowledge Acquisition Knowledge Engineering Knowledge Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Breuker, Wielinga 89]
    Breuker, J.; Wielinga, B.: Models of Expertise in Knowledge Acquisition. In: Guida, G., Tasso, C. (eds.): Topics in Expert System Design, Amsterdam: North-Holland, 1989, pp. 265–295.Google Scholar
  2. [Chandrasekaran 86]
    Chandrasekaran, B.: Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design. IEEE Expert, Fall 1986.Google Scholar
  3. [Chandrasekaran 88]
    Chandrasekaran, B.: Generic Tasks as building blocks for knowledge based systems: the diagnosis and rouline design examples. The Knowledge Engineering Review, October 1988, pp. 183–210.Google Scholar
  4. [Clancey 85]
    Clancey, W.: Heuristic Classification. Artificial Intelligence 27(1985), pp. 289–350.Google Scholar
  5. [Cunis, Guenter, Syska 87]
    Cunis, R.; Guenter, A.; Syska, I.: PLAKON: Ein Uebergreifendes Konzept zur Wissensrepraesentation und Problemloesung bei Planungs-und Konfigurationsaufgaben. In: Proceedings Expertensysteme 87 (Bericht des German Chapter of the ACM 28), Stuttgart: Teubner Verlag, 1987.Google Scholar
  6. [Hayes-Roth, Waterman, Lenat 83]
    Hayes-Roth, F.; Waterman, D.; Lenat, D.: Building Expert Systems. London: Addison Wesley Publishing Company, 1983.Google Scholar
  7. [Johnson 88]
    Johnson, N.E.: Mediating representations in knowledge elicitation. In: Knolwedge Elicitation: Principles, Techniques and Applications (ed. D. Diaper), Ellis Horwood Ltd. Publishers, Chichester, 1988, pp.177–194.Google Scholar
  8. [Karbach, Tong, Voss 88]
    Karbach, W.; Tong, X.; Voss, A.: Fillig in the knowledge acquisition gap: via KADSmodels of expertise to ZDEST-2'expert systems. In: Proceedings of EKAW88 (eds. Boose, Garnes, Linster), GMD-Studie, St. Augustin, 1988, pp. 31–1–31–17.Google Scholar
  9. [Karbach, Linster, Voss 89]
    Karbach, W.; Linster, M.; Voss, A.: OFFICE-Plan: Tackling the Synthesis Frontier. In: Proceedings of GWA189, Berlin: Springer Verlag, 1989, pp. 379–387.Google Scholar
  10. [Karbach, Linster 90]
    Karbach, W.; Linster, M.: Wissensakquisition fuer Expertensysteme — Techniken, Modelle, Softwarewerkzeugc—. Muenchen: Hanser-Verlag, 1990.Google Scholar
  11. [Karbach, Linster, Voss 90]
    Karbach, W.; Linster, M.; Voss, A.: Model-based Approaches — One Label one Idea?. European Workshop on Knowledge Acquisition 1990, Amsterdam.Google Scholar
  12. [Lenat 88]
    Lenat, D.; Guha, R.V.: The world according to CYC. MCC technical report no ACAAI-300-88.Google Scholar
  13. [Marcus 88]
    Marcus, S. (ed.): Automaling Knowledge Acquisition for Expert Systems. Boston: Kluwer Academic Publishers, 1988, pp. 81–123.Google Scholar
  14. [Mattos 90]
    Mattos, N.: An approach to DBS-based knowledge management. In: This volume.Google Scholar
  15. [McDermott 88]
    McDermott, J.: Preliminary Steps Towards a Taxonomy of Problem-Solving Methods. In: Marcus, S. (ed.): Automating Knowledge Acquisition for Expert Systems, Boston: Kluwer Academic Publishers, 1988, pp. 225–255.Google Scholar
  16. [Musen 89]
    Musen, M. A.: Building and extending models. In: Machine Learning, Vol.4, 1989, pp. 347–375.Google Scholar
  17. [Nebel 90]
    Nebel, B.: Wisscnsrepraesentation: Problemc und Loesungsansaetze. In: this volumeGoogle Scholar
  18. [Puppe 86]
    Puppe, F.: Assoziatives diagnostisches Problemloesen mit dem Expertensystem-Shell MED-2. Dissertation, Universitaet Kaiserslautern, 1986.Google Scholar
  19. [Puppe 90]
    Puppe, F.: Problemloesungsstrategicn in Expertensystemen. Univ. Karlsruhe, 1990.Google Scholar
  20. [Bartsch-Spoerl, Reinders 90]
    Bartsch-Spoerl, B.; Reinders, M.: A tentative framework for knowledge level reflection. deliverable of task I.3, to appear.Google Scholar
  21. [Schreiber et al. 87]
    Schreiber, G.; Bredeweg, B.; Davoodi, M.; Wielinga, B.: KADS: B2-Design. Esprit Project P1098, VF Memo 97, November 1987.Google Scholar
  22. [Tank 90]
    Tank, W.: Ueber das Selbstverslaendnis der Disziplin des Knowledge Engineering. Kl-2-90, Oldenbourg Verlag, Mnchen, Juni 1990.Google Scholar
  23. [Thoma 90]
    Thoma, H.: ?????. In: This volumeGoogle Scholar
  24. [Ueberrciter 90]
    Ueberreiter, B.: Modelbasierte Wissensakquisition — Anforderungen aus der industricllen Praxis. In: Tagungsband des zweiten Workshops der GI-Fachgruppe Knowledge Engineering, Daimler-Benz Arbeitsberichte, Berlin April 1990 (to appear).Google Scholar
  25. [Voss et al. 90]
    Voss, A.; Karbach, W.; Drouven, U.; Lorek, D.; Schukey, R.: Operationalization of a synthetic problem. deliverable of task I.2.1, REFLECT-report RFL/GMD/I.2.1, GMD St. Augustin, April 1990.Google Scholar
  26. [Wielinga, Breuker 86]
    Wielinga, B.; Breuker, J.: Models of expertise. Proceedings of ECAI86, Brighton, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Angi Voß
    • 1
  1. 1.Expert Systems Research Group GMDSankt Augustin

Personalised recommendations