Advertisement

Monoids described by pushdown automata

  • Maryse Pelletier
Part III Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 464)

Abstract

We define and study a family of monoids, called (PR)-monoids, of rather low complexity. A (PR)-monoid is a monoid the multiplication of which may be realized by a deterministic pushdown automaton. We prove that this family contains rational monoids, free groups and is closed under finitely generated submonoids and free products. We also consider other families of monoids of the same complexity than (PR)-monoids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Benois M. (1969), “Parties rationnelles du groupe libre”, C.R. Acad. Sci. Paris, Ser. A 269, 1188–1190.Google Scholar
  2. [2]
    Berstel J. (1979), “Transductions and Context-free Languages”, Teubner, Stuttgart.Google Scholar
  3. [3]
    Choffrut Ch. (1978), “Contribution à l'étude de quelques familles remarquables de fonctions rationnelles”, Thèse Sci. math., Univ. Paris 6, Paris.Google Scholar
  4. [4]
    Eilenberg S. (1974), “Automata, Languages and Machines”, Vol. A, Academic Press, New York.Google Scholar
  5. [5]
    Fliess M. (1971), “Deux applications de la représentation matricielle d'une série rationnelle non commutative”, Journal of Algebra, 19, 344–353.CrossRefGoogle Scholar
  6. [6]
    Ginsburg S. (1966), “The Mathematical Theory of Context-free Languages”, Mac Graw Hill.Google Scholar
  7. [7]
    Ginsburg S., Greibach S. (1966), “Deterministic Context-free Languages”, Inform. and Control, 9, 620–648.Google Scholar
  8. [8]
    Nivat M. (1968), “Transductions des langages de Chomsky”, Ann. Inst. Fourier, 18, 339–456.Google Scholar
  9. [9]
    Nivat M. (1970), “Sur les automates à mémoire à pile”, Proc. of International Computing Symposium, Bonn (W. Itzfeld, ed.); North Holland, 655–663.Google Scholar
  10. [10]
    Pelletier M. (1989), “Descriptions de semigroupes par automates”, Thèse de l'Université Paris 6.Google Scholar
  11. [11]
    Sakarovitch J. (1979), “Syntaxe des langages de Chomsky”, Th. Sc. Math., Univ. Paris 7.Google Scholar
  12. [12]
    Sakarovitch J. (1981), “Description des monoïdes de type fini”, EIK, 17, 417–434.Google Scholar
  13. [13]
    Sakarovitch J. (1987), Easy Multiplications. I. The Realm of Kleene's Theorem, Information and Computation, Vol. 74, No. 3, 173–197.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Maryse Pelletier
    • 1
  1. 1.LITP, Université Paris 6Paris Cedex 05France

Personalised recommendations