Counting polyominoes using attribute grammars

  • M. P. Delest
  • J. M. Fedou
Old Tracks, New Tracks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 461)


In this paper, we are interested in counting some combinatorial objects in ℕ×ℕ that are polyominoes. More precisely, we want some information about their generating function according to the following parameters perimeter and area. Coding with algebraic languages and defining some semantics of these languages with attribute grammars, we can give a non-algebraic system of equations satisfied by the generating function. In some cases, we infer new exact results from this system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.E. ANDREWS, q-Séries: their development and application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, AMS, Library of congress Cataloging-in-Publication Data (1986).Google Scholar
  2. [2]
    G.E. ANDREWS, Identities in combinatorics, II, A q-analog of the Lagrange inversion theorem, Proc. Amer. Math. Soc. 53 (1975), 240–245.Google Scholar
  3. [3]
    G.E. ANDREWS, The theory of plane partitions, Vol no 2, Encyclopedia of Maths. and its appl., G.C. Rota ed., Add. Wesley Reading, 1976.Google Scholar
  4. [4]
    R. ASKEY, T. KOORNWINDER, W.SCHEMPP (ed.), Special functions: group theoretical aspects and applications, Reidel, Dordrecht, 1984.Google Scholar
  5. [5]
    R. ASKEY, J. WILSON, Some basic hypergeometric polynomials that generalize Jacobi polynomials, Memoirs of Am. Math. Soc. 1985, no318.Google Scholar
  6. [6]
    C. BERGE, C.C. CHEN, V. CHVTAL, C.S. SEOW, Combinatorial properties of polyominoes, Combinatorica 3 (1981), 217–224.Google Scholar
  7. [7]
    R. CEDERBERG, On the coding, processing and display of binary images, Linköping Studies in Science and Technology, Dissertation no57, Linköping, Sweden, 1980.Google Scholar
  8. [8]
    S. CHAIKEN, D.J. KLEITMAN, M. SAKS, J. SHEARER, Covering regions by rectangles, SIAM J. Allg. Disc. Meth., 2 (1981), 394–410.Google Scholar
  9. [9]
    R. CORI, Un code pour les graphes planaires et ses applications, Astérisque, Soc. Math. France, no27 (1975).Google Scholar
  10. [10]
    R. CORI, B. VAUQUELIN, Planars maps are well labeled trees, Can. J. Math. 33 (1981), 1023–1042.Google Scholar
  11. [11]
    B. COURCELLE, Attribute grammars, in Methods and tools for Compiler Construction, B. Lorho, INRIA (1983), 81–102.Google Scholar
  12. [12]
    M.P. DELEST, Utilisation des langages algébriques et du calcul formel pour le codage et l'énumération des polyominos, Thèse d'Etat, Université de Bordeaux I, 1987.Google Scholar
  13. [13]
    M.P. DELEST, J.M. FEDOU, Exact formulas for fully diagonal compact animals, preprint LaBRI no89-06, Bordeaux, Février 1989.Google Scholar
  14. [14]
    M.P. DELEST, J.M. FEDOU, Enumeration of skew Ferrers diagrams, preprint LaBRI no89-, Bordeaux, Juin 1989.Google Scholar
  15. [15]
    M.P. DELEST, G. VIENNOT, Algebraic langages and polyominoes enumeration, Theor. Comp.Sci. 34 (1984), 169–206 North-Holland.CrossRefGoogle Scholar
  16. [16]
    D. DHAR, Equivalence of the two-dimensional directed site animal problem to Baxter hard-square lattice-gas model, Phys. Rev. Lett. 49 (1982), 959–962.CrossRefGoogle Scholar
  17. [17]
    J.M. FEDOU, Grammaires et q-énumérations de polyominos, Thèse de l'Université de Bordeaux I, 1989.Google Scholar
  18. [18]
    P. FLAJOLET, Combinatorial aspects of continued fractions, Discrete Math., 41,145–153, 1982.CrossRefGoogle Scholar
  19. [19]
    D. FOATA, Aspects combinatoires du calcul des q-séries, Compte rendu du Séminaire d'Informatique Théorique LITP année 1980–1981, Universités Paris VI Paris VII, 37–53.Google Scholar
  20. [20]
    A. GARSIA, A q-analogue of the Lagrange Inversion Formula, Houston J. Math. 7 (1981) 205–237.Google Scholar
  21. [21]
    A. GARSIA, J. REMMEL, A combinatorial interpretation of q-derangement and q-Laguerre Numbers, Europ.J.Combinatorics (1980) 1,47–59.Google Scholar
  22. [22]
    I. GESSEL, A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), 455–482.Google Scholar
  23. [23]
    I. GESSEL, D. STANTON, Application of q-Lagrange inversion to basic hypergeometric series, Transaction of the Amer. Math. Soc. 277 (1983), 173–201.Google Scholar
  24. [24]
    J. GOLDMAN, Formal langages and enumeration, J. of Comb. Th. A 24 (1978),318–338.CrossRefGoogle Scholar
  25. [25]
    S. GOLOMB, Polyominoes, Scribner, New York, (1965).Google Scholar
  26. [26]
    A.J. GUTTMANN, On the number of lattice animals enbedable in the square lattice, J. Phys. A:Math. Gen. 15 (1982), 1987–1990.CrossRefGoogle Scholar
  27. [27]
    M. ISMAIL, The zero of basic Bessel functions and associated orthogonal polynomials, J. of Math Anal and Appl 86 (1982), 1–18.Google Scholar
  28. [28]
    M. ISMAIL, D. STANTON, X.G. VIENNOT, The combinatorics of q-Hermite polynomials and the Askey-Wilson Integrale, Europ. J. Combinatorics, 8, (1987),379–392Google Scholar
  29. [29]
    D.E. KNUTH, Semantics of context-free langages, Math. Sys. Th. 2, 127–145.Google Scholar
  30. [30]
    D.A. KLARNER, R.L. RIVEST, Asymptotic bounds for the number of convex nominoes, Discrete Maths, 8 (1974), 31–40.Google Scholar
  31. [31]
    B. LORHO and alt., Methods and tools for Compiler Construction, INRIA (1983).Google Scholar
  32. [32]
    G. POLYA, On the number of certain lattice polygons, J. Comb. Theory 6 (1969), 102–105.Google Scholar
  33. [33]
    V. PRIVMAN, N.M. SVRAKIÉ, Exact Generating function for Fully Directed Compact Lattice Animals, Physical Review Letters Vol.60, No12 (1988) 1107–1109.PubMedGoogle Scholar
  34. [34]
    M.P.SCHÜTZENBERGER, Certain elementary families of automata,Proc. Symp. on Mathematical Theory of Automata (Polytechnic Institute of Brooklyn,1962) pp. 139–153.Google Scholar
  35. [35]
    M.P. SCHÜTZENBERGER, Context-free langages and pushdown automata, Information and Control 6 (1963), 246–264.Google Scholar
  36. [36]
    X.G. VIENNOT, Enumerative combinatorics and algebraic langages, Proceedings FCT'85, ed. L. Budach, Lecture Notes in Computer Science no199, Springer-Verlag, New-York/Berlin, 1985, 450–464.Google Scholar
  37. [37]
    X.G. VIENNOT Une théorie combinatoire des polynômes orthogonaux généraux, Notes de conférences données à l'Université du Quebec à Montréal, Septembre-octobre 1983.Google Scholar
  38. [38]
    H.A.J. WIJSHOFF, J. VAN LEEUWEN, Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino, Information and Control, 62 (1984), 1–25.Google Scholar
  39. [39]
    D. ZEILBERGER, D. BRESSOUD, A proof of Andrews'q-Dyson conjecture, Disc. Maths, 54, (1985) 201–224.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. P. Delest
    • 1
  • J. M. Fedou
    • 1
  1. 1.LaBRI, Unité de recherche associé au Centre National de Recherche Scientifique no 726, Département d'InformatiqueUniversité de Bordeaux ITalence CedexFrance

Personalised recommendations