Advertisement

A performance analysis of network topologies in finding the roots of a polynomial

  • Michel Cosnard
  • Pierre Fraigniaud
Algorithmic Studies For Hypercube-Type Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 457)

Abstract

This paper introduces the parallelization on a distributed memory multicomputer of two iterative methods for finding all the roots of a given polynomial. The parallel algorithms share the computation of the roots among the processors and perform a total exchange of the data at each step. Since the amount of communications is the main drawback of this approach, we study the effect of the network topology on the performance of the algorithms. Particularly, we show that among the different classical processors networks topologies (ring, 2d-torus or n-cube), the hypercube topology minimizes the communications. For each topology is computed the optimal number of processors. Experiments on the hypercube FPS T40 illustrate the results.

Key words

Parallel algorithms local memory parallel computers polynomial zeros simultaneous polynomial root-finders broadcasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    O. Aberth: "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously" Mathematics of computation, v27, no122, 339–344 (1973).Google Scholar
  2. [BP]
    J.C. Bermond and C. Peyrat: "de Bruijn and Kautz networks: a competitor for the hypercube ?" Hypercube and distributed computers 279–293, F.André and J.P. Verjus Editors, North-Holland (1989).Google Scholar
  3. [BR]
    L.Bomans and D.Roose: "Communication benchmarks for the iPSC/2" Hypercube and distributed computers 93–104, F.André and J.P.Verjus Editors, North-Holland (1989).Google Scholar
  4. [CT]
    T.Champion and B.Tourancheau: "Tnode: document utilisateur" Technical Report LIP-IMAG 89-02, ENS Lyon, France (1989).Google Scholar
  5. [CF]
    M.Cosnard and P.Fraigniaud: "Asynchronous Durand-Kerner and Aberth polynomial root finding methods on a distributed memory multicomputer" Parallel Computing 89, Leiden (1989).Google Scholar
  6. [D]
    E. Durand: "Solutions numériques des équations algébriques, Tome 1: Equations du type F(x)=0; Racines d'un polynôme" Masson, Paris, (1960).Google Scholar
  7. [F1]
    P.Fraigniaud: "The Durand-Kerner polynomials root finding method in case of multiple roots" To appear in BIT.Google Scholar
  8. [F2]
    P.Fraigniaud: "Performance analysis of broadcasting in hypercubes" Hypercube and distributed computers 311–328, F.André and J.P.Verjus Editors, North-Holland (1989).Google Scholar
  9. [FMR]
    P. Fraigniaud, S. Miguet and Y. Robert: "Scattering on a ring of processors" Parallel Computing v13, no3, 377–383 (1990).MathSciNetGoogle Scholar
  10. [Fre]
    T.L. Freeman: "Calculating polynomial zeros on a local memory parallel computer" Parallel Computing v12, 351–358 (1989).Google Scholar
  11. [G]
    H. Guggenheimer: "Initial approximations in Durand-Kerner's root finding method" BIT 26, 537–539 (1986).Google Scholar
  12. [JR]
    L.H. Jamieson and T.A. Rice: "A highly parallel algorithm for root extraction" IEEE Trans. on Comp. v28, no3, 443–449 (1989).Google Scholar
  13. [JH]
    C.T. Ho and S.L. Johnsson: "Optimum broadcasting and personalized communication in hypercubes" IEEE Trans. Comp. vol 38, no9 (1989).Google Scholar
  14. [K]
    I.O. Kerner: "Ein gesamtschrittverfahren zur berechnung der nullstellen von polynomen" Numerische Mathematik 8, 290–294 (1966).Google Scholar
  15. [KT]
    S.Kuppuswami and B.Tourancheau: "Evaluating the performances of Transputer based hypercube vector computer" La lettre du Transputer, no4 (1990).Google Scholar
  16. [NS]
    J.L. Nicolas and A. Schinzel: "Localisation des zeros de polynômes intervenant en théorie du signal" Research report Dep. of Math. univ. of Limoges, Limoges, France (1989).Google Scholar
  17. [SS]
    Y. Saad and M.H. Schultz: "Data communication in parallel architectures" Parallel Computing 11, 131–150 (1989).MathSciNetGoogle Scholar
  18. [SW]
    Q.F.Stout and B.Wager: "Intensive hypercube communication I" University of Michigan, Computing research laboratory CRL-TR-9-87 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Michel Cosnard
    • 1
  • Pierre Fraigniaud
    • 1
  1. 1.Laboratoire de l'Informatique du Parallélisme - IMAG ENS LyonLyon Cedex 07France

Personalised recommendations