Advertisement

Toward the design of adaptive instructions and helps for knowledge communication with the problem solving monitor ABSYNT

  • Claus Möbus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 451)

Abstract

For approximately ten years computer aided knowledge communication disappeared from the research scene. Today, it has been reestablished under the abbreviations of ICAI (Intelligent Computer Aided Instruction) and ITS (Intelligent Tutoring Systems) with regular conferences, research journals and textbooks [1,2,3,4,5].

This paper offers contributions to CAI and ICAI in the framework of the problem solving monitor (PSM) ABSYNT. Our system — a special variant of an ITS — is designed with respect to a sequence of programming tasks in the visual functional computer language ABSYNT (ABstract SYNtax Trees). It provides the learner with a friendly environment including a help but no curricular component.

First, we show that conventional instructions and helps can be improved by using existing AI methodology, visualization of information and cognitive modelling to make them adaptive to the knowledge state of the user. Second, we demonstrate the improvement of ICAI by an interactive help system which supports planning tasks of the user. It checks hypotheses postulated by the user, and gives feedback concerning imcomplete proposals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    WENGER, E., Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge, Los Altos California: Morgan Kaufman Publishers, Inc., 1987Google Scholar
  2. [2]
    POLSON, M.C. & RICHARDSON, J. (ed), Foundations of Intelligent Tutoring Systems, Hillsdale, N.J.: Lawrence Erlbaum Press, 1988Google Scholar
  3. [3]
    PSOTKA, J., MASSEY, L.D. & MUTTER, S.A. (eds), Intelligent Tutoring Systems: Lessons Learned, Hillsdale, N.J.: Lawrence Erlbaum Press, 1988Google Scholar
  4. [4]
    BIERMAN, D., BREUKER, J. & SANDBERG, J. (eds), Artificial Intelligence and Education, Amsterdam: ISO, 1989, ISBN 9051990146Google Scholar
  5. [5]
    MAURER, H. (ed), Computer Assisted Learning, Lecture Notes in Computer Science, Berlin-Heidelberg-New York: Springer 1989Google Scholar
  6. [6]
    KEARSLEY, G.P. (ed), Artificial Intelligence & Instruction, Reading, Mass.: Addison-Wesley 1987Google Scholar
  7. [7]
    SCHMITT, H. & WOHLFARTH, P., Mathematikbuch 5N, München: Bayerischer Schulbuchverlag, 1978Google Scholar
  8. [8]
    BAUER, F.L. & GOOS, G., Informatik: Eine einführende Übersicht, Erster Teil, Berlin: Springer 1982Google Scholar
  9. [9]
    DOSCH, W., New Prospects of Teaching Programming Languages, in:F.B. LOVIS & E.D. TAGG (eds), Informatics Education for All Students, Elsevier Science Publishers B.V. (North-Holland), IFIP 1984, 153–169Google Scholar
  10. [10]
    DOSCH, W., Principles of Teaching Programming Languages, in: E. SCERRI (ed), Proceedings of the 2nd Biennal Meeting of the Community of Mediterranean Universities, Malta, 17–21, October 1988 (in press)Google Scholar
  11. [11]
    MÖBUS, C. & THOLE, H.-J. Tutors, Instructions and Helps. In: CHRISTALLER, Th. (ed): Künstliche Intelligenz KIFS 1987, Informatik-Fachberichte 202, Heidelberg, Springer 1989, S. 336–385Google Scholar
  12. [12]
    MÖBUS, C. & SCHRÖDER, O., Knowledge Specification and Instructions for a Visual Computer Language. In: KLIX, F., STREITZ, N.A., WAERN, Y. & WANDKE, N. (eds): Man-Computer Interaction Research Macinter II, Proceedings of the second Network Seminar of Macinter held in Berlin/GDR, 21.–25. März 1988, Amsterdam: North Holland, 1989, S. 535–565Google Scholar
  13. [13]
    JANKE, G., & KOHNERT, K., Interface Design of a Visual Programming Language: Evaluating Runnable Specifications. In: KLIX, F., STREITZ, N.A., WAERN, Y. & WANDKE, N. (eds): Man Computer Interaction Research Macinter II, Proceedings of the second Network Seminar of Macinter held in Berlin/GDR, 21.–25. März 1988, Amsterdam: North Holland, 1989, S. 567–581Google Scholar
  14. [14]
    MÖBUS, C. & SCHRÖDER, O., Representing Semantic Knowledge with 2-Dimensional Rules in the Domain of Functional Programming, in: TAUBER, M., GORNY, P. (eds), Visualization in Human-Computer Interaction. Heidelberg, Springer: Lecture Notes in Computer Science, Berlin (in press)Google Scholar
  15. [15]
    SHNEIDERMAN, B., Empirical Studies of Programmers: The Territory, Paths, and Destinations, 1–12, in: E. SOLOWAY & S. IYENGAR (eds), Empirical Studies of Programmers, Norwood,N.J.: Ablex, 1986Google Scholar
  16. [16]
    WEBER, G.,WALOSZEK, G. & WENDER, K.F., The Role of Episodic Memory in an Intelligent Tutoring System, in: J. SELF(ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction, London: Chapman & Hall, 1989Google Scholar
  17. [17]
    JANKE, G., MÖBUS, C., & THOLE, H.J., Empirische Pilotstudie zur Konstruktion eines problemlösezentrierten Hilfesystems für einen Problemlösemonitor, 44–55, in: F. STETTER & W. BRAUER (eds), Informatik und Schule 1989: Zukunfts-perspektiven der Informatik für Schule und Ausbildung, Informatik-Fachberichte Nr.220, Berlin-Heidelberg-New York: Springer 1989Google Scholar
  18. [18]
    HOUGHTON, R.C., Online Help Systems: A Conspectus, Communications of the ACM, 1984,27,126–133CrossRefGoogle Scholar
  19. [19]
    SHNEIDERMAN, B., Designing the User Interface, Reading Mass., 1987Google Scholar
  20. [20]
    McKENDREE, J., Feedback Content During Complex Skill Acquisition, in: G. SALVENDY, S.L. SAUTER & J.J. HURRELL (eds), Social, Ergonomic and Stress Aspects of Work with Computers, 181–188, Amsterdam: Elsevier Science Publ., 1987Google Scholar
  21. [21]
    HARTLEY, J.R. & PILKINGTON, R., Software Tools for Supporting Learning in Intelligent On-Line Help Systems, in: P. ERCOLI & R. LEWIS (eds), Artificial Intelligence Tools in Education, 39–65, Amsterdam: North-Holland, 1988Google Scholar
  22. [22]
    HARTLEY, J.R. & SMITH, M.J., Question Answering and Explanation Giving in Online Help Systems, in: J.SELF (ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction, 338–360, London, 1988Google Scholar
  23. [23]
    KEARSLEY, G., Online Help Systems: Design and Implementation, Norwood, N.J., 1988Google Scholar
  24. [24]
    MOLL, Th. & FISCHBACHER, K., Über die Verbesserung der Benutzerunterstützung durch ein Online-Tutorial, in: S.MAASS & H.OBERQUELLE (Hrsgb), Software-Ergonomie '89, 223–232, Stuttgart 1989Google Scholar
  25. [25]
    SCHRÖDER, O., FRANK, K.D., KOHNERT, K., MÖBUS, C., RAUTERBERG, M., Instruction-Based Knowledge Acquisition and Modification: The Operational Knowledge for a Functional, Visual Programming Language, Computers in Human Behavior (in press)Google Scholar
  26. [26]
    van LEHN, K., Towards a Theory of Impasse-Driven Learning. In: MANDL, H., LESGOLD, A. (eds), Learning Issues for Intelligent Tutoring Systems, Springer, New York, 1988, S. 19–41Google Scholar
  27. [27]
    NEVES, D.M., ANDERSON, J.R., Knowledge Compilation: Mechanisms for the Automatization of Cognitive Skills, in: ANDERSON, J.R. (ed): Cognitive Skills and their Acquisition, Hillsdale: Erlbaum, 1981, S. 57–84Google Scholar
  28. [28]
    LEWIS, C., Composition of Productions, in KLAHR, LANGLEY & NECHES (eds), Production System Models of Learning and Development, 329–358, Cambridge, Mass.: MIT Press, 1987Google Scholar
  29. [29]
    LAIRD, J.E., ROSENBLOOM, P.S. & NEWELL, A., Chunking in SOAR: The Anatomy of a General Learning Meachnism, Machine Learning, 1986, 1, 11–46Google Scholar
  30. [30]
    WOLFF, J.G., Cognitive Development as Optimisation, in: L. BOLC (ed), Computational Models of Learning, 161–205, Berlin: Springer, 1987Google Scholar
  31. [31]
    ANDERSON, J.R., A Theory of the Origins of Human Knowledge, Artificial Intelligence, 1989, 40, 313–351CrossRefGoogle Scholar
  32. [32]
    SCHRÖDER, O., KOHNERT, K., Toward a Model of Instruction-Based Knowledge Acquisition: The Operational Knowledge for a Functional Visual Programming Language, Journal of Artificial Intelligence in Education (in press)Google Scholar
  33. [33]
    KATZ, I.R. & ANDERSON, J.R., Debugging: An Analysis of Bug-Location Strategies, Human-Computer Interaction, 1987–1988,3,351–399CrossRefGoogle Scholar
  34. [34]
    JOHNSON, W.L., Intention-Based Diagnosis of Novice Programming Errors, Research Notes in Artificial Intelligence, London: Pitman, 1986Google Scholar
  35. [35]
    ANDERSON, J.R.: Production Systems, Learning, and Tutoring, in: KLAHR, D., LANGLEY, P., NECHES, R., Production System Models of Learning and Development, 437–458, Cambridge,Mass.: 1987Google Scholar
  36. [36]
    MURRAY, W.R., Automated Program Debugging for Intelligent Tutoring Systems, Research Notes in Artificial Intelligence, London: Pitman, 1988Google Scholar
  37. [37]
    GREER, J.E., MARK, M.A. & McCALLA, G.I.: Incorporating Granularity-Based Recognition into SCENT. In: BIERMANN, D., BREUKER, J.,SANDBERG, J. (eds): Artificial Intelligence and Education, Amsterdam: IOS, 1989, S. 107–115Google Scholar
  38. [38]
    NILSSON, N.J., Principles of Artificial Intelligence, Palo Alto, CA; Tioga Publishing Co., 1980Google Scholar
  39. [39]
    ABRAMSON, H. & DAHL, V., Logic Grammars, New York: Springer 1989Google Scholar
  40. [40]
    LEVI, G. & SIROVICH, F., Generalized And/Or-Graphs, Artificial Intelligence, 1976, 7, 243–259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Claus Möbus
    • 1
  1. 1.Dept. of Computational SciencesUniversity of OldenburgOldenburgW. Germany

Personalised recommendations