Advertisement

Partheo: A high-performance parallel theorem prover

  • J. Schumann
  • R. Letz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 449)

Abstract

PARTHEO, a sound and complete or-parallel theorem prover for first-order logic is presented. The proof calculus is model elimination. PARTHEO consists of a uniform network of sequential theorem provers communicating via message passing. Each sequential prover is implemented as an extension of Warren's abstract machine. PARTHEO is written in parallel C and is running on a network of 16 transputers. The paper comprises a description of the system architecture, the theoretical background, details of the implementation, and results of performance measurements.

Keywords

Theorem proving first-order logic connection method model elimination Warren Abstract Machine or-parallelism message passing transputers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Parallel C — User Guide. 3L Ltd., Livingston, Scotland, 1988.Google Scholar
  2. [2]
    Owen Astrachan. METEOR: Model elimination theorem prover for efficient OR-parallelism. In W.W. Bledsoe, M. Stickel, P. Lincoln, R. Overbeek, and D. Plaisted, editors, 1989 AAAI Spring Symposium on Representation and Compilation in High Performance Theorem Proving: Titles and Abstracts, Stanford, CA, 3 1989.Google Scholar
  3. [3]
    P.E. Allen, S. Bose, E.M. Clarke, and S. Michaylov. PARTHENON: A Parallel Theorem Prover for Non-Horn Clauses. In CADE 9, pages 764–765, Argonne, Illinois,USA, Springer, 1988.Google Scholar
  4. [4]
    U. Baron, J. C. de Kergommeaux, M. Hailperin, M. Ratcliffe, M. Robert, J.-Cl. Syre, and H. Westphal. The parallel ECRC Prolog System PEPSys: An Overview and Evaluation Results. In FGCS, ECRC Munich, 1988.Google Scholar
  5. [5]
    S. Bayerl, W. Ertel, M. v. d. Koelen, F. Kurfess, R. Letz, J. Schumann, Ch. Suttner, and N. Trapp. PARTHEO/6: PARallel Automated THEorem Prover based on the Connection Method for Full First Order Logic — Implementation and Performance. ESPRIT 415F Deliverable D15, 1989.Google Scholar
  6. [6]
    S. Bayerl, W. Ertel, F. Kurfess, R. Letz, and J. Schumann. D16 / Full First Order Logic PARallel Inference Machine — Language and Design. ESPRIT 415, Deliverables, Brussels, 1989.Google Scholar
  7. [7]
    E.W. Beth. The Foundations of Mathematics. North-Holland, 1959.Google Scholar
  8. [8]
    S. Bose, E.M. Clarke, D.E. Long, and S. Michaylov. Parthenon: A Parallel Theorem Prover for Non-Horn Clauses. In LICS, 1989.Google Scholar
  9. [9]
    W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, second edition, 1987.Google Scholar
  10. [10]
    W.F. Clocksin. Principles of the delPhi Parallel Inference Machine. Comp. Journal, 30(5):386–392, 5 1987.Google Scholar
  11. [11]
    J. Corbin and M. Bidoit. A Rehabilitation of Robinson's Unification Algorithm. In Information Processing, pages 909–914. North-Holland, 1983.Google Scholar
  12. [12]
    E. Eder. An Implementation of a Theorem Prover based on the Connection Method. In W. Bibel and B. Petkoff, editors, AIMSA: Artificial Intelligence Methodology Systems Applications, Varna, Bulgaria, 1985. North-Holland.Google Scholar
  13. [13]
    Ph. Jorrand and Ph. Schnoebelen. Parallel Implementation of Connection Method on an Abstract FP2 Machine. ESPRIT 415F Deliverable D17, 1989.Google Scholar
  14. [14]
    V. Kumar, Y. Lin, and A. Gupta. Parallel Execution of Logic Programs. In W.W. Bledsoe, M. Stickel, P. Lincoln, R. Overbeek, and D. Plaisted, editors, 1989 AAAI Spring Symposium on Representation and Compilation in High Performance Theorem Proving: Titles and Abstracts, Stanford, CA, 3 1989.Google Scholar
  15. [15]
    R. Letz and J. Schumann. Global Variables in Logic Programming. Technical report, ATP-Report, Technische Universität München, 1988.Google Scholar
  16. [16]
    R. Letz, S. Bayerl, J. Schumann, and W. Bibel. SETHEO — A High-Performance Theorem Prover. (to appear in Journal of Automated Reasoning), 1990.Google Scholar
  17. [17]
    D.W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland, 1978.Google Scholar
  18. [18]
    J. Pelletier and P. Rudnicki. Non-obviousness. AAR Newsletter 6, pages 4–5, 1986.Google Scholar
  19. [19]
    Frank Pfenning. Single Axioms in the Implicational Propositional Calculus. In CADE 9, pages 710–713, Argonne, Illinois, USA, Springer, 1988.Google Scholar
  20. [20]
    D. A. Plaisted. The Occur-check Problem in Prolog. New Generation Computing, 2:309–322, 1984.Google Scholar
  21. [21]
    J. Schumann, N. Trapp, and M. van der Koelen. SETHEO: User's Manual. Technical report, ATP-Report, Technische Universität München, 1989.Google Scholar
  22. [22]
    R.M. Smullyan. First Order Logic. Springer, 1968.Google Scholar
  23. [23]
    M.A. Stickel. A Prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler. Journal of Automated Reasoning, 4:353–380, 1988.Google Scholar
  24. [24]
    J. Vlahavas and C. Halatsis. A New Abstract Prolog Instruction Set. In 7th International Workshop of Expert Systems and Applications, pages 1025–1050, Avignon, 1987.Google Scholar
  25. [25]
    D.H.D Warren. An Abstract PROLOG Instruction Set. Technical report, SRI, Menlo Park, CA, USA, 1983.Google Scholar
  26. [26]
    D.H.D. Warren. Parallel Execution Models and Architectures for Prolog. Presented at Working Group Architecture, ESPRIT 415, 1 1988.Google Scholar
  27. [27]
    G.A. Wilson and J. Minker. Resolution, Refinements, and Search Strategies: a Comparative Study. IEEE Transactions on Computers, C-25:782–801, 8 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Schumann
    • 1
  • R. Letz
    • 1
  1. 1.Forschungsgruppe Künstliche Intelligenz Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations