A tableaux-based theorem prover for a decidable subset of default logic

  • Camilla B. Schwind
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 449)


We present a new, efficient and clear method for computing extensions and deriving formulas of a normal default theory which offers a new insight into the nature of default reasoning and seems to be equally successfully applicable to open and non-normal default theories. It is based on the semantic tableaux method (Smullyan 1968) and works for default theories with a finite set of defaults which are formulated over a decidable subset of first-order logic. We prove that all extensions of a normal default theory can be produced by constructing the semantic tableau of one formula built from the general laws and the default consequences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besnard P. Quiniou R. Quniton P. 1983. A Theorem-Prover for a decidable subset of default logic. Proceedings of the AAAI — 83: 27–30.Google Scholar
  2. [2]
    Besnard P and Siegel P. 1988. Supposition-based logic for automated nonmonotonic reasoning. Proc. 9th Conf. on Automated Deduction, Argonne, I1.Google Scholar
  3. [3]
    Bossu G. Siegel P. 1985. Saturation, Nonmonotonic reasoning and the Closed-World Assumption. Artificial Intelligence 25, 1: 13–63.Google Scholar
  4. [4]
    Brown F. M. 1986. A commonsense theory of nonmonotonic reasoning. Proc. 8th Conf. on Automated Deduction, Oxford. Lecture Notes in Computer Science, Vol. 230, Springer Verlag, 209–228.Google Scholar
  5. [5]
    Lafon E. Schwind C. 1988. A Theorem Prover for Action Performance. Proceedings of the 8th European Conference on Artificial Intelligence, ECAI — 88: 541–546.Google Scholar
  6. [6]
    Schwind C. 1985. Un démonstrateur de théorèmes pour des-logiques modales et temporelles en PROLOG. 5ème Congrès AFCET Reconnaissances des formes et Intelligence Artificielle, Grenoble, France, pp. 897–913.Google Scholar
  7. [7]
    Reiter R. 1980. A logic for default reasoning. Artificial Intelligence, 13: 81–132.Google Scholar
  8. [8]
    Risch V. 1989. Utilisation d'un démonstrateur à tableaux pour le calcul d'extensions en Logique des Défauts. Mémoire de D.E.A., Université d'Aix-Marseille II.Google Scholar
  9. [9]
    Smullyan R. 1968. First-Order Logic. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Camilla B. Schwind
    • 1
  1. 1.Faculté des Sciences de LuminyGroupe d'Intelligence Artificielle, CNRSMarseille, Cedex 9France

Personalised recommendations