Advertisement

The pathwidth and treewidth of cographs

  • Hans L. Bodlaender
  • Rolf H. Möhring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 447)

Abstract

It is shown that the pathwidth of a cograph equals its treewidth, and a linear time algorithm to determine the pathwidth of a the cograph and build a corresponding path-decomposition is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A Survey. BIT, 25:2–23, 1985.Google Scholar
  2. [2]
    S. Arnborg, D.G. Corneil and A. Proskurowski. Complexity of finding embeddings in a κ-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.Google Scholar
  3. [3]
    H.L. Bodlaender. Classes of graphs with bounded treewidth. Technical Report RUU-CS-86-22, Dept. of Computer Science, University of Utrecht, Utrecht, 1986.Google Scholar
  4. [4]
    H.L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-width. Techn. rep., Lab. for Computer Science, M.I.T., 1987. Ext. abstract in proceedings ICALP 88.Google Scholar
  5. [5]
    H.L. Bodlaender. Improved self-reduction algorithms for graphs with bounded treewidth. Technical Report RUU-CS-88-29, Dept. of Computer Science, Univ. of Utrecht, 1988. To appear in: Proc. Workshop on Graph Theoretic Concepts in Comp. Sc. '89.Google Scholar
  6. [6]
    D.G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs, Disc. Appl. Math. 3: 163–174, 1981.CrossRefGoogle Scholar
  7. [7]
    D.G Corneil, Y. Perl and L. Stewart. A linear recognition for cographs. SIAM J. Comput., 4:926–934, 1985.Google Scholar
  8. [8]
    J. Ellis, I.H. Sudborough, and J. Turner. Graph separation and search number. Report DCS-66-IR, University of Victoria, 1987.Google Scholar
  9. [9]
    M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.Google Scholar
  10. [10]
    J. Gustedt. Path width for chordal graphs is NP-complete. Preprint TU Berlin, 1989.Google Scholar
  11. [11]
    L.M. Kirousis and C.H. Papadimitriou. Interval graphs and searching. Disc. Math., 55:181–184, 1985.Google Scholar
  12. [12]
    L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling. Theor. Comp. Sc., 47:205–218, 1986.CrossRefGoogle Scholar
  13. [13]
    R.H. Möhring. Graph problems related to gate matrix layout and PLA folding. Technical Report 223/1989, Department of Mathematics, Technical University of Berlin, 1989.Google Scholar
  14. [14]
    M.B. Novick. Fast parallel algorithms for the modular decomposition. Technical Report TR 89-1016, Department of Computer Science, Cornell University, 1989.Google Scholar
  15. [15]
    N. Robertson and P. Seymour. Graph minors. I. Excluding a forest. J. Comb. Theory Series B, 35:39–61, 1983.Google Scholar
  16. [16]
    N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7:309–322, 1986.CrossRefGoogle Scholar
  17. [17]
    N. Robertson and P. Seymour. Graph minors. XIII. The disjoint paths problem. Manuscript, 1986.Google Scholar
  18. [18]
    P. Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Rolf H. Möhring
    • 2
  1. 1.Department of Computer ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of MathematicsTechnical University of BerlinBerlin 12West Germany

Personalised recommendations