New ways for developing proof theories for first-order multi modal logics

  • Hans Jürgen Ohlbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 440)


Most of the nonclassical logics, temporal logics, process logics etc., which have been used for the specification and verification of processes are essentially extensions of modal logics. In this paper a quite complex first-order many-sorted multi modal logic (MM-Logic) with modal operators referring to a basic branching accessibility relation, its reflexive, transitive and reflexive-transitive closure, indexed modal operators, ‘eventually’ operators, ‘until’ operators and built-in equality is defined. It can serve as temporal, action, process or epistemic logic in various applications. The main purpose of this paper, however, is to demonstrate the development of a proof theory using the translation (into predicate logic) and refutation (with predicate logic resolution and paramodulation) paradigm. MM-Logic formulae are first translated into an intermediate logic called Context Logic (CL) and then with the standard translator from CL into an order-sorted predicate logic where a standard theorem prover can be used. The CL translation mechanism which simplifies the development of proof theories for complex nonclassical logics is briefly described.


Automated Theorem Proving by Translation and Refutation Resolution Nonclassical Logics Modal Logic Temporal Logic Process Logic Epistemic Logic Action Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyer&Moore 79.
    R.S. Boyer, J.S. Moore: A Computational Logic. Academic Press 1979.Google Scholar
  2. Chan 87.
    M. Chan. The Recursive Resolution Method. New Generation Computing, 5 pp. 155–183, 1987.Google Scholar
  3. Chang&Lee 73.
    C.-L. Chang, R.C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving. Science and Applied Mathematics Series (ed. W. Rheinboldt), Academic Press, New York, 1973.Google Scholar
  4. Clarke&Emerson 81.
    M.C. Clarke, E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic. Lecture Notes in Computer Science 131, Springer Verlag, New York, 1981, pp. 52–71.Google Scholar
  5. Enjalbert&Auffray 89.
    P. Enjalbert, Y. Auffray. Modal Theorem Proving: An Equational Viewpoint Submitted to IJCAI 89.Google Scholar
  6. Fariñas&Herzig 88.
    L. Fariñas del Cerro, A.Herzig Quantified Modal Logic and Unification Theory Langages et Systèmes Informatique, Université Paul Sabatier, Toulouse. Rapport LSI no 293, jan. 1988. See also L. Fariñas del Cerro, A. Herzig Linear Modal Deductions. Proc. of 9th Conference on Automated Deduction, pp. 487–499, 1988.Google Scholar
  7. Fitting 72.
    M.C. Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic, XIII:237–247,1972.Google Scholar
  8. Fitting 83.
    M.C. Fitting. Proof methods for modal and intuitionistic logics. Vol. 169 of Synthese Library, D. Reidel Publishing Company, 1983.Google Scholar
  9. Grätzer 79.
    G. Grätzer. Universal Algebra. Springer Verlag (1979).Google Scholar
  10. Halpern&Moses 85.
    J.Y. Halpern and Y. Moses. A guide to modal logics of knowledge and belief: preliminary draft. In Proc. of 9th IJCAI, pp 479–490, 1985.Google Scholar
  11. Herzig 89.
    Herzig, A, @ PhD Thesis, Université Paul Sabatier, Toulouse.Google Scholar
  12. Hughes&Cresswell 68.
    G.E. Hughes, M.J. Cresswell. An Introduction to Modal Logics. Methuen & Co., London, 1986.Google Scholar
  13. Hintikka 62.
    J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, New York, 1962.Google Scholar
  14. Konolige 86.
    K. Konolige. A Deduction Model of Belief and its Logics. Research Notes in Artificial Intelligence, Pitman, London, 1986.Google Scholar
  15. Kripke 59.
    S. Kripke. A Completeness Theorem in Modal Logic. J. of Symbolic Logic, Vol 24, 1959, pp 1–14.Google Scholar
  16. Kripke 63.
    S. Kripke. Semantical analysis of modal logic I, normal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Vol. 9, 1963, pp 67–96.Google Scholar
  17. Levesque 84.
    H.J. Levesque. A logic of knowledge and active belief. Proc. of American Association of Artificial Intelligence, University of Texas, Austin 1984.Google Scholar
  18. Loveland 78.
    D. Loveland: Automated Theorem Proving: A Logical Basis. Fundamental Studies in Computer Science, Vol. 6, North-Holland, New York 1978.Google Scholar
  19. Moore 80.
    R.C. Moore. Reasoning about Knowledge and Action. PhD Thesis, MIT, Cambridge 1980.Google Scholar
  20. Ohlbach 88.
    H.J. Ohlbach. A Resolution Calculus for Modal Logics Thesis, FB. Informatik, University of Kaiserslautern, 1988.Google Scholar
  21. Ohlbach 89.
    H.J. Ohlbach. Context Logic. SEKI Report SR-89-8, FB. Informatik, Univ. of Kaiserslautern.Google Scholar
  22. Robinson 65.
    J.A. Robinson. A Machine Oriented Logic Based on the Resolution Principle J.ACM, Vol. 12, No 1, 1965, 23–41.CrossRefGoogle Scholar
  23. Robinson & Wos 69.
    Robinson, G., Wos, L. Paramodulation and theorem provcing in first order theories with equality. Machine Intelligence 4, American Elsevier, New York, pp. 135–150, 1969.Google Scholar
  24. Schmidt-Schauß 85.
    Schmidt-Schauß, M. A Many-Sorted Calculus with Polymorphic Functions Based on Resolution and Paramodulation. Proc. of 9th IJCAI, Los Angeles, 1985, 1162–1168.Google Scholar
  25. Schmidt-Schauß 88.
    Schmidt-Schauß, M. Computational aspects of an order-sorted logic with term declarations. Thesis, FB. Informatik, University of Kaiserslautern, 1988.Google Scholar
  26. Smullyan 68.
    R.M. Smullyan. First Order Logic, Springer Verlag, Berlin 1968.Google Scholar
  27. Stickel 85.
    M. Stickel. Automated Deduction by Theory Resolution. Journal of Automated Reasoning Vol. 1, No. 4, 1985, pp 333–356.CrossRefGoogle Scholar
  28. Wallen 87.
    L.A. Wallen. Matrix proof methods for modal logics. In Proc. of 10th IJCAI, 1987.Google Scholar
  29. Walther 87.
    C. Walther: A Many-sorted Calculus Based on Resolution and Paramodulation. Research Notes in Artifical Intelligence, Pitman Ltd., London, M. Kaufmann Inc., Los Altos, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hans Jürgen Ohlbach
    • 1
  1. 1.FB Informatik, UniversityKaiserslauternW-Germany

Personalised recommendations