Reducibility of monotone formulas to μ-formulas

  • Daniele Mundici
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 440)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [0]
    M. Haiman, Proof theory for linear lattices, Advances in Math.58 (1985) 209–242.Google Scholar
  2. [1]
    H.B. Hunt, III, R.E. Stearns, Monotone boolean functions, distributive lattices, and the complexity of logics, algebraic structures, and computation structures, In: Lecture Notes in Computer Science, Vol. 210 (Springer, Berlin, 1986) 277–290.Google Scholar
  3. [2]
    D.Mundici, Functions computed by monotone Boolean formulas with no repeated variables, Theoretical Computer Science66 (1989).Google Scholar
  4. [3]
    L. Pitt, L.G. Valiant, Computational Limitations on Learning from Examples, J. ACM35 (1988) 965–984.CrossRefGoogle Scholar
  5. [4]
    J.E. Savage, The Complexity of Computing, (J. Wiley, New York 1976).Google Scholar
  6. [5]
    L.G. Valiant, A Theory of the Learnable, Communications ACM27.11 (1984) 1134–1142.Google Scholar
  7. [6]
    I. Wegener, The Complexity of Boolean Functions, (B.G. Teubner, Stuttgart, and J. Wiley, New York, 1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Daniele Mundici
    • 1
  1. 1.Department of Computer ScienceUniversity of MilanMilanoItaly

Personalised recommendations