“Intrinsic geometry in LOGO- distance of linear segments”

  • M. Lansky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 439)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. Bibliography

  1. [1]
    Cesàro, E.: Lezioni di geometria intrinseca, Napoli, 1900Google Scholar
  2. [2]
    Kowalewski, G.: Vorlesungen über Allgemeine natürliche Geometrie und Liesche Transformationsgruppen, Walter de Gruyter, Berlin/Leipzig, 1931Google Scholar
  3. [3]
    Mehlum, E.: Curve and Surface Fitting Based on Variational Criteriae for Smoothness, Central Institute for Industrial Research (CIIR), Olso, Norway, 1969Google Scholar
  4. [4]
    Woodsford, P.A.: Mathematical Methods in Computer Graphics-a Survey, Symposium on Computer Graphics, Gesellschaft für Informatik, Vol. 5, Berlin, 1971Google Scholar
  5. [5]
    Rogers, D.F./ Adams, J.A.: Mathematical Elements for Computer Graphics, McGraw-Hill, New York, 1976Google Scholar
  6. [6]
    Lansky, M.: Kinematik in LOGO-Trial and Error Approach. In: Melezinek, A. (ed.): Medien und Technik, Leuchtturm, Alsbach, 1986, p. 423–426Google Scholar
  7. [7]
    Lansky, M.: Natürliche Geometrie mit LOGO/ Natural (Intrinsic) Geometry with LOGO. In: Melezinek, M./ Kornhauser, A./ Sturm L. (ed.): Technik und Informationsgesellschaft, Leuchtturm, Alsbach, 1987Google Scholar
  8. [8]
    Rogers, D.F.: Computer Graphics in Engineering Education, Pergamon Press, Oxford, GB, 1982Google Scholar
  9. [9]
    Lansky, M.: On Parameter Invariance of Plane Curves in Computer Geometry, Proceedings of the IV th International Conference TAKIS (Int.Ass. for Cybernetics, Informatics and Theory of Systems), San Marino, 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Lansky
    • 1
  1. 1.University of PaderbornFRG

Personalised recommendations