Putting algebraic components together: A dependent type approach

  • Jean-Claude Reynaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 429)


We define a framework based on dependent types for putting algebraic components together. It is defined with freely generated categories. In order to preserve initial, loose and constrained semantics of components, we introduce the notion of SPEC-categories which look like specific finitely co-complete categories. A constructive approach which includes parametrization techniques is used to define new components from basic predefined ones. The problem of the internal coding of external signature symbols is introduced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BE86]
    D. Bert, R. Echahed, Design and implementation of a generic, logic and functional programming language, LNCS 213, pp.119–132 (1986).Google Scholar
  2. [BHK88]
    Bergstra and al., Module Algebra, Report P8823. University of Amsterdam, (Nov. 1988).Google Scholar
  3. [BR88]
    D.Bert, J.C. Reynaud, Primitives for Algebraic Components, Esprit Project 1598, Replay/T2.3/I (July 1988).Google Scholar
  4. [Cart78]
    J. Cartmell, Generalized Algebraic Theories and Contextual Categories, PhD. Thesis, Oxford (1978).Google Scholar
  5. [Cart85]
    J. Cartmell, Formalizing the Network and Hierarchical Data Models. An Application of categorical logic. Symposium on Category Theory and Computer Science, LNCS 283Google Scholar
  6. [EM85]
    H. Ehrig, B. Mahr, Fundamentals of algebraic specification 1: Equations and initial semantics, Springer, (1985).Google Scholar
  7. [EW86]
    H. Ehrig, H. Weber, Programming in the large with algebraic module specifications, IFIP-Congress (1986)Google Scholar
  8. [FGJM85]
    K.Futatsugi, J.A. Goguen, J.P.Jouannaud, J. Meseguer, Principles of OBJ2, Proc. of the 12th ACM Symposium on Principles of Programming Languages, pp.52–66 (1985)Google Scholar
  9. [Frey72]
    P. Freyd, Aspects of Topoi, Bull. Austral. Math. Soc. 7,1972.Google Scholar
  10. [Gau84]
    M.C. Gaudel, A first introduction to PLUSS. Université Paris Sud, Orsay Techn. Rep., 1984.Google Scholar
  11. [GB85]
    J.A. Goguen, R.M.Burstall, Introducing institutions, Proc. Logics of Programming Workshop LNCS 164, pp.221–256 (1984).Google Scholar
  12. [LS86]
    J.Lambek, P.J. Scott, Introduction to higher order categorical logic, Cambridge University Press 1986.Google Scholar
  13. [McL72]
    S. MacLane, Categories for the working mathematician, Springer 1972.Google Scholar
  14. [Poi85]
    A. Poigne, Algebra Categorically, Symposium on Category Theory and Computer Science, LNCS 283, pp.76–102.Google Scholar
  15. [PP88]
    F.Parisi-Presicce, Product and iteration of module specifications, CAAP'88, LNCS 299 (1988)Google Scholar
  16. [Re87]
    J.C. Reynaud, Semantique de LPG, RR 651 IMAG, 56 LIFIA (1987)Google Scholar
  17. [Re89]
    J.C. Reynaud, A calculus for putting Algebraic Components Together. REPLAY/T2.3/F, ESPRIT Project 1598(REPLAY), Sept. 1989.Google Scholar
  18. [ST84]
    D.T. Sannella, A. Tarlecki, Building specifications in an arbitrary institution, Proc. of the Intl. Symp. on Semantics of Data Types, LNCS 173, Springer(1984).Google Scholar
  19. [Tar85]
    A. Tarlecki, On the existence of free models in abstract algebraic institutions, TCS 37 (1985) pp.269–304.Google Scholar
  20. [Wi86]
    M. Wirsing, Structured algebraic specifications: a kernel language. TCS 42, 1986, 123–249.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jean-Claude Reynaud
    • 1
  1. 1.Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle IMAG-CNRSGRENOBLEFRANCE

Personalised recommendations