Advertisement

Completion modulo associativity, commutativity and identity (AC1)

  • Jean-Pierre Jouannaud
  • Claude Marché
Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 429)

Abstract

Rewriting with associativity, commutativity and identity has been an open problem for a long time. In a recent paper [BPW89], Baird, Peterson and Wilkerson introduced the notion of constrained rewriting, to avoid the problem of non-termination inherent to the use of identities. We build up on this idea in two ways: by giving a complete set of rules for completion modulo these axioms; by showing how to build appropriate orderings for proving termination of constrained rewriting modulo associativity, commutativity and identity.

Key words

Class rewriting Constrained rewriting Termination Completion modulo AC1 Constrained completion Rewrite orderings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BD89]
    Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a congruence. Theoretical Computer Science, 67(2&3):173–201, October 1989.Google Scholar
  2. [BDH86]
    L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Proc. 1st IEEE Symp. Logic in Computer Science, Cambridge, Mass., pages 346–357, June 1986.Google Scholar
  3. [BHK*88]
    Hans-Jurgen Bürckert, Alexander Herold, Deepak Kapur, Jorg H. Siekmann, Mark E. Stickel, Michael Tepp, and Hantao Zhang. Opening the AC-unification race. J. Automated Reasoning, 4(4):465–474, December 1988.Google Scholar
  4. [BJS88]
    A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schauß. Unification in free extensions of Boolean rings and Abelian groups. In Proc. 3rd IEEE Symp. Logic in Computer Science, Edinburgh, July 1988.Google Scholar
  5. [BP85]
    Leo Bachmair and David A. Plaisted. Termination orderings for associative-commutative rewriting systems. J. Symbolic Computation, 1(4):329–349, December 1985.Google Scholar
  6. [BPW89]
    T. Baird, G. Peterson, and R. Wilkerson. Complete sets of reductions modulo Associativity, Commutativity and Identity. In Proc. Rewriting Techniques and Applications 89, Chapel Hill, LNCS 355, pages 29–44, Springer-Verlag, April 1989.Google Scholar
  7. [DJ90]
    Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of Theoretical Computer Science, chapter Rewrite Systems. Volume B, North-Holland, 1990. (to appear).Google Scholar
  8. [JK86]
    J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal on Computing, 15(4), 1986.Google Scholar
  9. [KB70]
    D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297, Pergamon Press, 1970.Google Scholar
  10. [LB77]
    Dallas S. Lankford and A. M. Ballantyne. Decision procedures for simple equationnal theories with commutative-associative axioms: Complete sets of commutative-associative reductions. Research Report Memo ATP-39, Department of Mathematics and Computer Sciences, University of Texas, Austin, Texas, USA, August 1977.Google Scholar
  11. [LS76]
    M. Livesey and J. Siekmann. Unification of Bags and Sets. Research Report, Institut fur Informatik I, Universität Karlsruhe, West Germany, 1976.Google Scholar
  12. [Mar89]
    Claude Marché. Complétion modulo Associativité, Commutativité et élément neutre. Research Report 513, Laboratoire de Recherche en Informatique, Université de Paris-Sud, Orsay, France, Septembre 1989.Google Scholar
  13. [PS81]
    Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equationnal theories. Journal of the ACM, 28(2):233–264, April 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jean-Pierre Jouannaud
    • 1
  • Claude Marché
    • 1
  1. 1.Centre d'OrsayLRI, Bat. 490 Université de Paris-SudORSAY CEDEXFRANCE

Personalised recommendations