Advertisement

Two approaches towards the formalisation of VDM

  • Christine Lafontaine
  • Yves Ledru
  • Pierre-Yves Schobbens
Formalisations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 428)

Abstract

This paper reports on two related experiments in the formalisation of software development methods: the VDM method has been formalised in two logic frameworks, Deva and B. The resulting formalisations are presented through a small example, discussed and compared. These experiments provided additional insight on the structure of VDM developments and on the VDM constructs, as well as more general lessons on the formalisation of methods.

Keywords

formalisation of VDM automated support of formal methods theorem provers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abr88]
    J.R. Abrial. The B Tool (Abstract). In R. Bloomfield, L. Marshall, and R. Jones, editors, VDM '88 — The Way Ahead (LNCS 328), Springer Verlag, 1988.Google Scholar
  2. [AG85]
    J.R. Abrial and A. Guillon. Un outil de conception de logiciels. In Actes des Journées SM90, Eyrolles, Paris, 1985.Google Scholar
  3. [Bac84]
    R. Backhouse. A note on subtypes in Martin-Löf's theory of types. Technical Report CSM-70, University of Essex, 1984.Google Scholar
  4. [BCJ84]
    H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in program proofs. Acta Informatica, 21(3):251–269, 1984.Google Scholar
  5. [C*86]
    R. Constable et al. Implementing Mathematics with the NuPRL Proof Development System. Prentice-Hall, 1986.Google Scholar
  6. [CIP85]
    Language Group CIP. The Munich Project CIP. Volume 183 of Lecture Notes in Computer Science, Springer Verlag, 1985.Google Scholar
  7. [DG88]
    D. Dzierzgowski and E. Grégoire. Formalizing software development methods. In Proceedings of IEEE CompEuro-88, Brussels, System Design: Concept, Methods and Tools, pages 230–239, IEEE Computer Society Press, 1988.Google Scholar
  8. [Gab88]
    Robert Gabriel. The Automatic Generation of Graphical User Interfaces. In Proceedings of IEEE CompEuro-88, Brussels, System Design: Concept, Methods and Tools, IEEE Computer Society Press, 1988.Google Scholar
  9. [GG89]
    S.J. Garland and J.V. Guttag. An Overview of LP, the Larch Prover. In N. Dershowitz, editor, Proc. Rewriting Techniques and Applications — 3rd International Conference (RTA-89), pages 137–51, Springer Verlag, Chapel Hill, NC, USA, 3–5 April 1989.Google Scholar
  10. [Goo85]
    D. I. Good. Mechanical proofs about computer programs. In C. A. R. Hoare and John C. Shepherdson, editors, Mathematical logic and programming languages, Prentice Hall, 1985.Google Scholar
  11. [HHP87]
    R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings of the Second Annual Conference on Logic in Computer Science, IEEE Computer Society Press, 1987.Google Scholar
  12. [HQM86]
    R. Harper, D. Mac Queen, and R. Milner. Standard ML. Technical Report Technical report ECS-LFCS-86-2, Edinburgh, 1986.Google Scholar
  13. [JL88]
    C. Jones and P. Lindsay. A support system for formal reasoning: requirements and status. In R. Bloomfield, L. Marshall, and R. Jones, editors, VDM '88 — The Way Ahead (LNCS 328), Springer Verlag, 1988.Google Scholar
  14. [Jon86]
    C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, London, 1986.Google Scholar
  15. [Kah87]
    G. Kahn. Natural semantics. In Proceedings of STACS '87 (LNCS 247), Springer Verlag, 1987.Google Scholar
  16. [Laf89a]
    C. Lafontaine. Formalisation of the VDM reification in DEVA.1. Technical Report RR 89-14, Université Catholique de Louvain, Unité d'Informatique, 1989.Google Scholar
  17. [Laf89b]
    C. Lafontaine. Writing tactics in DEVA.1: Play and Replay of VDM proof obligations. Technical Report RR 89-9, Université Catholique de Louvain, Unité d'Informatique, 1989.Google Scholar
  18. [Lin88]
    Peter A. Lindsay. A survey of mechanical support for formal reasoning. Software Engineering Journal, 3(1), 1988.Google Scholar
  19. [LLS90]
    C. Lafontaine, Y. Ledru, and P.-Y. Schobbens. An experiment in formal software development: using the B theorem prover on a VDM case study. In Proceedings of the 12th International Conference on Software Engineering, IEEE Computer Society Press, 1990.Google Scholar
  20. [Ned80]
    R.P. Nederpelt. An approach to theorem proving on the basis of a typed lambda-calculus. In Proceedings of the fifth conference on Automated Deduction (LNCS 87), pages 182–194, Springer Verlag, 1980.Google Scholar
  21. [Ngu88]
    T. T. Nguyen. On the formalization of Jackson's Structured Programming method. Technical Report RR No. 88-5, Université Catholique de Louvain, Unité d'Informatique, 1988.Google Scholar
  22. [Pau86]
    L. Paulson. Natural deduction proof as higher order resolution. Journal of Logic Programming, 237–258, 1986.Google Scholar
  23. [pE89]
    ToolUse project (Esprit 510). Final report of Task S (support). November 1989.Google Scholar
  24. [Smi87]
    D.R. Smith. Application of a strategy for designing divide-and-conquer algorithms. Science of Computer Programming, 8(3):147–172, 1987.Google Scholar
  25. [SWdGC88]
    M. Sintzoff, M. Weber, P. de Groote, and J. Cazin. Definition 1.0 of the approximation DEVA.1 of a development language. Technical Report RR 88-41, Université Catholique de Louvain, Unité d'Informatique, 1988.Google Scholar
  26. [Woo89]
    J.C.P. Woodcock. Calculating Properties of Z Specifications. ACM SIGSOFT Software Engineering Notes, 14(5):43–54, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Christine Lafontaine
    • 1
  • Yves Ledru
    • 1
  • Pierre-Yves Schobbens
    • 1
  1. 1.Unité d'InformatiqueUniversité Catholique de LouvainLouvain-La-NeuveBelgique

Personalised recommendations