Timed Petri nets and application to multi-stage production systems

  • Hervé P. Hillion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 424)


This paper studies the periodic functioning of deterministic timed Petri Nets for generalized nets (i.e with integer valued arcs). From the formulation of the average marking in steady-state, we first establish a set of necessary conditions between the initial marking, the firing times and frequencies of transitions, the dates of first firing occurences and the minimal delays of tokens at places. These conditions are shown to provide a lower bound to the cycle time, using the minimal S-invariants of the net. A modeling of multi-stage production systems is further developed, based on timed Petri Nets, and the results obtained are used to conduct a performance evaluation of the system.

Key words

Timed Petri Nets Periodic Functioning Performance Evaluation Multi-stage Production Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ramchandani, C. (1974). "Analysis of asynchronous concurrent systems by Timed Petri Nets", Technical Report no 120, Laboratory for Computer Science, MIT, Cambridge, MA.Google Scholar
  2. [2]
    Sifakis, J. (1980). "Performance Evaluation of Systems using nets", Net Theory and Applications, Lecture Notes in Computer Science, Springer-Verlag, Berlin, FRG, pp. 307–319.Google Scholar
  3. [3]
    Ramamoorthy, C.V and G.S. Ho (1980). "Performance Evaluation of asynchronous concurrent systems using Petri Nets", IEEE Trans. on Software Engineering, vol. SE-6, no 5, pp. 440–449.Google Scholar
  4. [4]
    Chretienne, P. (1984). "Exécutions contrôlées des réseaux de Pétri temporisés", Technique et Sciences Informatiques, volume 3, no 1, pp. 23–31; see also "Les Réseaux de Pétri Temporisés", Thèse d'Etat, Université Paris VI, Paris.Google Scholar
  5. [5]
    Chretienne, P. and J. Carlier (1984). "Modeling Scheduling Problems with Timed Petri Nets", Advances in Petri Nets 1984, Lecture Notes in Computer Science no 188, Springer-Verlag, Berlin, FRG, pp. 62–82.Google Scholar
  6. [6]
    Doetsch, G. (1974). Introduction to the theory and application of the Laplace Transform, Springer-Verlag.Google Scholar
  7. [7]
    Halbwachs, N. (1984). "Modélisation et Analyse des Systèmes Informatiques Temporisés", Thèse d'Etat, INPG Grenoble.Google Scholar
  8. [8]
    Alla, H. (1987). "Réseaux de Pétri colorés et Réseaux de Pétri continus", Thèse d'Etat, INPG Grenoble.Google Scholar
  9. [9]
    Memmi, G. (1980). "Linear Algebra in Net theory", Net theory and Applications, Lecture Notes in Computer Science, no 84, Springer-Verlag, Berlin, FRG, pp. 213–223.Google Scholar
  10. [10]
    Orlicky, J.A, G. plossl and O.W. Wight (1972). "Structuring the Bill of Material for MRP", Production and Inventory Management, volume 13, no 4, pp. 19–42.Google Scholar
  11. [11]
    Martinez, J. and M. Silva (1980). "A simple and fast algorithm to obtain all invariants of a generalized Petri Net", Lecture Notes in Computer Science, no 52, Springer-Verlag, Berlin, pp. 302–310.Google Scholar
  12. [12]
    Buzacott, J.A. and D.D. Yao (1986). "On Queueing Network Models of Flexible Manufacturing Systems", Queueing Theory and Applications, vol. 1.Google Scholar
  13. [13]
    Hillion, H.P and J.M. Proth (1989). "Performance Evaluation of job-shop systems using timed Event-Graphs", IEEE trans. on Automatic Control, vol. 34, no1, jan. 89.Google Scholar
  14. [14]
    Hillion, H.P, J.M. Proth and X.L. Xie (1987). "A heuristic algorithm for the periodic scheduling and sequencing job-shop problem", proc. 26th IEEE Conference on Decision and Control, Los-Angeles, Dec. 9–11.Google Scholar
  15. [15]
    Hillion, H.P. (1989). "Modélisation et analyse des systèmes de production discrets par les réseaux de Petri temporisés", Doctorat de l'Université Paris VI, Paris, jan. 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hervé P. Hillion
    • 1
  1. 1.Inria-LorraineVandoeuvre Les Nancy CedexFrance

Personalised recommendations