Advertisement

A reduction theory for coloured nets

  • S. Haddad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 424)

Abstract

This paper presents the generalization to the coloured nets of the most efficient reductions defined by Berthelot for Petri nets. First, a generalization methodology is given that is independent from the reduction one wants to generalize. Then based on that methodology, we define extensions of the implicit place transformation and the pre and post agglomeration of transitions. For each reduction we prove that the reduced net has exactly the same properties as the original net. Finally we completely reduce an improved model of the data base management with multiple copies, thus showing its correctness.

Keywords

coloured Petri nets behavioural properties methodology reductions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [And81]
    C. ANDRE: Systèmes à évolutions parallèles: Modélisation par réseaux de Petri à capacités et analyse par abstraction. Thèse d'état. Université de Nice (1981)Google Scholar
  2. [Bae81]
    J.L. BAER, C.GIRAULT, G. GARDARIN, G. ROUCAIROL: The two step comitment protocol: modeling specification and proof methodology. Fifth international conference on software enginering IEEE/ACM San diego pp 363–373 (1981)Google Scholar
  3. [Ber83]
    G. BERTHELOT: Transformation et analyse de réseaux de Petri, applications aux protocoles. Thèse d'état. Université P. et M. Curie. Paris (1983)Google Scholar
  4. [Ber85]
    G. BERTHELOT: Checking properties of nets using transformations. LNCS 222. Advances in Petri nets 85, G. Rozenberg ed, Springer-Verlag 1986.Google Scholar
  5. [Ber86]
    G. BERTHELOT: Transformations and decompositions of nets. LNCS 254. Advances in Petri nets 86, G. Rozenberg ed, Springer-Verlag 1987.Google Scholar
  6. [Bra83]
    G.W. BRAMS: Réseaux de Petri. Théorie et pratique. Masson editeur, Paris (1983)Google Scholar
  7. [Col86]
    J M COLOM, J MARTINEZ, M SILVA: Packages for validating discrete production systems modeled with Petri nets. IMACS-IFAC Symposium, Lille, France (1986)Google Scholar
  8. [Gen81]
    H.J. GENRICH, K. LAUTENBACH: System modelling with high-level Petri nets. Theoretical computer science 13,1981, pp 103–136.Google Scholar
  9. [Gen88]
    H.J. GENRICH: Equivalence transformations of PrT-nets.Ninth european workshop on applications and theory of Petri nets. Venise, Italie (1988).Google Scholar
  10. [Had86]
    S. HADDAD, C. GIRAULT: Algebraic structure of flows of a regular net. Seventh european workshop on applications and theory of Petri nets, Oxford England, june 1986, in "Advances in Petri nets 87", L.N.C.S. no 266, G.Rozenberg ed., Springer Verlag, 1987, pp 73–88.Google Scholar
  11. [Had87a]
    S. HADDAD: Un calcul d'une base de flots pour les réseaux colorés. Deuxième colloque C3 Angoulême, France, 1987.Google Scholar
  12. [Had87b]
    S. HADDAD: Une catégorie régulière de réseau de Petri de haut niveau: définition, propriétés et réductions. Application à la validation de systèmes distribués. Thèse de l'Universite Pierre et Marie Curie. Paris (1987)Google Scholar
  13. [Had88]
    S. HADDAD: Generalization of reduction theory to coloured nets. Nineth european workshop on applications and theory of Petri nets. Venise, Italie (1988).Google Scholar
  14. [Jen81a]
    K. JENSEN: How to find invariants for coloured Petri nets. 10 th symposium on Mathematical foundations of computer science 1981, L.N.C.S. vol 118, Springer-Verlag, 1981, pp 327–338.Google Scholar
  15. [Jen81b]
    K. JENSEN: Coloured Petri nets and the Invariant method. TCS 14 (1981)Google Scholar
  16. [Jen82]
    K. JENSEN: High-level Petri nets. Third european workshop on applications and theory of Petri nets, Varenna Italy, september1982, pp 261–276.Google Scholar
  17. [Kro89]
    P. KROHN, M. RAUHAMAA, A. YLIKOSKI: Reduction transformations of PrT_nets. Submitted to the sixth symposium on theoretical aspects of computer science. Paderborn.Google Scholar
  18. [Lau85]
    K. LAUTENBACH, A. PAGNONI: Invariance and duality in predicate transition nets and in coloured nets. Arbeitspapiere der G.M.D, no132.Google Scholar
  19. [Sil85]
    M. SILVA, J. MARTINEZ, P. LADET, H. ALLA: Generalized inverses and the calculation of symbolic invariants for coloured Petri nets. Technique et science informatique, Vol.4 no1, 1985, pp 113–126.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • S. Haddad
    • 1
  1. 1.UNIVERSITE PARIS VI and C.N.R.S. MASIParis Cedex 05

Personalised recommendations