Advertisement

P/T-systems as abstractions of C/E-systems

  • Jörg Desel
  • Agathe Merceron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 424)

Abstract

A formal relation between Condition/Event-systems and Place/Transition-systems is presented. Concepts of net topology are used to construct and interconnect functional units of a C/E-system, synchronic distances are used to abstract from these functional units and get a P/T-system. A result on the relations between a C/E-system and its functional units regarding synchronic distances is proved.

Since for C/E-systems system runs can start with an arbitrary case of the full case class the behaviour of P/T-systems is generalized in a similar way. With this extension each occurrence sequence of a C/E-system corresponds to an occurrence sequence of the associated P/T-system. Furthermore it is shown that a concurrent behaviour of a C/E-system induces a concurrent behaviour of its P/T-system abstraction(s).

A look at the reverse question is taken: can any P/T-system be viewed as a shorthand for a system specification by means of synchronic distances? It is shown that at least for a special class of P/T-systems this question can be answered positively.

Some links to other works in this area are discussed.

Keywords

Relations between Condition/Event-systems and Place/Transition-systems synchronic distance abstraction simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Best, E.; Fernández C., C.: Notations and Terminology on Petri Net Theory. Arbeitspapiere der GMD Nr.195 (1986).Google Scholar
  2. [2]
    Desel, J.: Synchronie-Abstand in Stellen/Transitionen-Systemen. Arbeitspapiere der GMD Nr.341 (1988).Google Scholar
  3. [3]
    Desel, J., Merceron, A.: P/T-systems as Abstractions of C/E-systems. Arbeitspapiere der GMD Nr.331 (1988).Google Scholar
  4. [4]
    Fernández C., C.: Net Topology I. Interner Bericht ISF-75-9 (1975). Net Topology II. Interner Bericht der GMD ISF-76-2 (1976).Google Scholar
  5. [5]
    Genrich, H.J.: Projections of C/E-systems. In: Advances in Petri Nets 1985; Rozenberg, G. (Ed.), Lecture Notes in Computer Science Vol.222 pp.224–232 (1986).Google Scholar
  6. [6]
    Genrich, H.J.; Stankiewicz-Wiechno, E.: A Dictionary of Some Basic Notions of Net Theory. In: Net Theory and Applications; Brauer W. (Ed.), Lecture Notes in Computer Science Vol.84 pp.519–535 (1980).Google Scholar
  7. [7]
    Goltz, U.: On Condition/Event Representation of Place/Transition Nets. In: Concurrency and Nets. Voss, K.; Genrich, H.J.; Rozenberg, G. (Eds.). Springer-Verlag, pp.217–231 (1987).Google Scholar
  8. [8]
    Goltz, U., Reisig, W. and Thiagarajan, P.S.: Two Alternative Definitions of Synchronic Distance. Informatik-Fachberichte Nr.52, Springer-Verlag (1982).Google Scholar
  9. [9]
    Petri, C.A.: Concepts of Net Theory. Mathematical Foundations of Computer Science: Proceedings of Symposium and Summer School, High Tatras, Sep. 3–8, 1973. Mathematical Institute of the Slovak Academy of Sciences, pp.137–146 (1973).Google Scholar
  10. [10]
    Petri, C.A.: Interpretations of Net Theory. Interner Bericht der GMD ISF-75-07 (1976).Google Scholar
  11. [11]
    Reisig, W.: Place/Transition Systems. In: Petri Nets: Central Models and their Properties. Brauer, W.; Reisig, W.; Rozenberg, G. (Eds.). Lecture Notes in Computer Science, Vol. 254, pp.117–141 (1987).Google Scholar
  12. [12]
    Silva, M.: Towards a Synchrony Theory for P/T Nets. In: Concurrency and Nets. Voss, K.; Genrich, H.J.; Rozenberg, G. (Eds.). Springer-Verlag, pp.435–460 (1987).Google Scholar
  13. [13]
    Smith, E.; Reisig, W.: The Semantics of a Net is a Net — An Exercise in General Net Theory. In: Concurrency and Nets. Voss, K.; Genrich, H.J.; Rozenberg, G. (Eds.). Springer-Verlag, pp.461–479 (1987).Google Scholar
  14. [14]
    Thiagarajan, P.S.: Elementary Net Systems. In: Petri Nets: Central Models and their Properties. Brauer, W.; Reisig, W.; Rozenberg, G. (Eds.). Lecture Notes in Computer Science, Vol. 254, pp.26–59 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jörg Desel
    • 1
  • Agathe Merceron
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2
  2. 2.Institut für methodische Grundlagen Gesellschaft für Mathematik und DatenverarbeitungAugustin 1

Personalised recommendations