Skip to main content

Electron transfer processes in imaging

  • Conference paper
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 156))

Abstract

Many photoimaging technologies involve electron-transfer processes in the critical image capture, or light-sensitive, step of the process. This chapter reviews the photochemical and photophysical basis for these processes. The chapter is divided into several major sections: an introduction to basic imaging concepts; a brief discussion of the chemistries and photochemistries involved in conventional silver halide based imaging processes and those involving other semiconductors as primary light absorbers; and sections describing less conventional processes that are based on organic photochemical charge transfer processes (electrophotography, color formation systems, and photopolymerization processes).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mattes S, Farid S (1984) Science 226: 917

    Google Scholar 

  2. Mattes S, Farid S (1983) in: Padwa A (ed) Organic Photochemistry. Marcel Dekker, New York

    Google Scholar 

  3. Kirmaier C, Holten D (1987) Photosynthesis 13: 225

    Google Scholar 

  4. Govindjee (1982) Photosynthesis: Energy conversion by plants and bacteria. Academic, New York

    Google Scholar 

  5. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Nature 318: 618

    Google Scholar 

  6. Michel H. Deisenhoffer J (1987) in: Biggins J (ed) Progress in Photosynthesis Research. Martinus Nijhoff, Boston

    Google Scholar 

  7. Cohen SG, Parola A, Parson Jr AJ (1973) Chem. Rev. 73: 141

    Google Scholar 

  8. Roth HD, Schilling MLM (1979) J. Am. Chem. Soc. 101: 1898

    Google Scholar 

  9. Majima T, Pac C, Sakurai H (1979) Chem. Lett. 1133

    Google Scholar 

  10. Wong PC, Arnold DR (1979) Tet. Letts. 2101

    Google Scholar 

  11. Murov SL, Cole RS, Hammond GS (1968) J. Am. Chem. Soc. 90: 2957

    Google Scholar 

  12. Roth HD, Schilling MLM, Jones IIG (1981) J. Am. Chem. Soc. 103: 1246

    Google Scholar 

  13. Evans TR, Wake RW, Sifain MM (1973) Tet. Letts. 701

    Google Scholar 

  14. Foote CS, Ericksen J (1980) J. Am. Chem. Soc. 102: 6083

    Google Scholar 

  15. Schaap AP, Zaklika KA, Kaskar B, Fung LWM (1980) J. Am. Chem. Soc. 102: 389

    Google Scholar 

  16. Mattes SL, Farid S (1980) J. Chem. Soc. Chem. Commun. 457

    Google Scholar 

  17. Brinkman E, Delzenne G, Poot A, Willems J (1978) Unconventional Imaging Processes. Focal Press, London

    Google Scholar 

  18. Jacobson KI, Jacobson RE (1976) Imaging Systems. Wiley, New York

    Google Scholar 

  19. James TH (ed) (1977) The theory of the photographic process, Macmillan, New York

    Google Scholar 

  20. Haist G (1979) Modern photographic processing. Wiley, New York

    Google Scholar 

  21. Meier H (1968) Spectral sensitization, Focal Press, New York

    Google Scholar 

  22. Vogel WH (1873) Ber. dtsch. chem. Ges. 6: 1302

    Google Scholar 

  23. Becquerel C (1874) Compte Rend. Hebd. Séances Acad. Sci. 79: 185

    Google Scholar 

  24. Gurney RW, Mott N (1938) Proc. Roy. Soc. (London) Ser. A 164: 151

    Google Scholar 

  25. Gilman PB (1974) Photog. Sci. Engg. 18: 475

    Google Scholar 

  26. Costa L F, Gilman PB (1975) Photog. Sci. Engg. 19: 207

    Google Scholar 

  27. Penner TL, Gilman PB (1975) Photog. Sci. Engg. 19: 102

    Google Scholar 

  28. Carroll BH (1977) Photog. Sci. Engg. 21: 151

    Google Scholar 

  29. Kuhn H, Mobius D (1971) Angew. Chem., Int. Ed. 10: 620

    Google Scholar 

  30. v Szentpaly L, Mobius D, Kuhn H (1970) J. Chem. Phys. 52: 4618

    Google Scholar 

  31. McLeod GJ (1969) Photog. Sci. Engg. 13: 93

    Google Scholar 

  32. DeLorenzo EJ, Case LK, Stickles EM, Stamoulis WA (1969) Photog. Sci. Engg. 13: 95

    Google Scholar 

  33. Lehner H (1969) Photog. Sci. Engg. 13: 103

    Google Scholar 

  34. Addiss Jr RR, Wakim FG (1969) Photog. Sci. Engg. 13: 111

    Google Scholar 

  35. Vohl P (1969) Photog. Sci. Engg. 13: 120

    Google Scholar 

  36. Kraeutler B, Bard AJ (1978) J. Am. Chem. Soc. 100: 2239

    Google Scholar 

  37. Lehn JM, Sauvage JP (1980) Nouv. J. Chim. 4: 623

    Google Scholar 

  38. Kalyanasundaram K, Borgarello E, Gratzel M (1981) Helv. Chim. Acta 64: 362

    Google Scholar 

  39. Hada H, Tanemura H, Yonezawa Y (1978) Bull. Chem. Soc. Japan 51: 3154

    Google Scholar 

  40. Eaton DF (1981) US Patent 4, 257, 915 Photopolymer initiating system containing a semiconductor, a reducing agent, and an oxidizing agent

    Google Scholar 

  41. Eaton DF (1984) Pure Appl. Chem. 56: 1191

    Google Scholar 

  42. Neta P, Behar D (1980) J. Am. Chem. Soc. 102: 4798

    Google Scholar 

  43. Neta P, Behar D (1981) J. Phys. Chem. 85: 690

    Google Scholar 

  44. Masuda H, Shimidzu N, Ohno S (1984) Chem. Letts. 1701

    Google Scholar 

  45. Brinkman EM (1971) Proc 3rd Symp. Society of Photographic Scientists and Engineers on Unconventional Photographic Systems, Oct 20–23, 1971, Washington DC, p 13

    Google Scholar 

  46. Levy B, Lindsey M (1972) Photog. Sci. Engg. 16: 389

    Google Scholar 

  47. Levy B, Lindsey M (1973) Photog. Sci. Engg. 17: 135, 423

    Google Scholar 

  48. Carlson CF (1942) US Patent 2, 297, 691 Electrophotography

    Google Scholar 

  49. Carlson CF (1965) in: Dessauer JH, Clark HE (eds) Xerography and related processes. Focal Press, New York (historical introduction to the invention of xerography)

    Google Scholar 

  50. Scharfe ME, Pai DM, Gruber RJ (1989) in: Sturge JM, Walrath V, Shepp A (eds) Imaging processes and materials, Neblette's Eighth Edition, Van Nostrand Reinhold, New York, p 135

    Google Scholar 

  51. Schaffer RL (1975) Electrophotography Focal Press, New York

    Google Scholar 

  52. Pfister G (1984) La Researche 16: 204

    Google Scholar 

  53. Gill WD (1972) J. Appl. Phys. 43: 5052

    Google Scholar 

  54. Melz PJ (1972) J. Chem. Phys. 57: 1694

    Google Scholar 

  55. Goliber TE, Perlstein JH (1982) Photogr. Sci. Engg. 26: 236

    Google Scholar 

  56. Dulmage WJ, Light WA, Marino SJ, Salzberger CD, Smith DL, Studenmeyer (1978) J. Appl. Phys. 49: 5543

    Google Scholar 

  57. Borsenberger PM, Chowdry A, Hoesterey DC, May W (1978) J. Appl. Phys. 49: 5555

    Google Scholar 

  58. Light WA (1971) US Patent 3, 615, 414 Photoconductive compositions and elements and method of preparation

    Google Scholar 

  59. Terenin A (1961) Proc. Chem. Soc. 321

    Google Scholar 

  60. Heilmeir GH, Warfield G (1963) J. Chem. Phys. 38: 163, 897

    Google Scholar 

  61. Bornmann J (1957) J. Chem. Phys. 27: 604

    Google Scholar 

  62. Loutfy RO, Hor AM, Di Paola-Baranyl G, Hsiao CK (1985) J. Imag. Sci. 29: 116: 148

    Google Scholar 

  63. Schlosser G (1978) J. Appl. Photogr. Eng. 4: 118

    Google Scholar 

  64. Loutfy RO, Hsiao CK, Kazmeier G (1983) Photogr. Sci. Engg. 27: 5

    Google Scholar 

  65. Khe NC, Takenouchi T, Kawara T, Tanaka H, Yokada S (1984) Photogr. Sci. Engg. 28: 195

    Google Scholar 

  66. Law KY (1987) J. Phys. Chem. 91: 5184

    Google Scholar 

  67. Law KY (1987) J. Imag. Sci. 31: 172

    Google Scholar 

  68. Mort J, Pflister G, (1978) Polym. Technol. 12: 89

    Google Scholar 

  69. Andrievsky AM (1985) Elektron. Org. Mater. 256 (in Russian)

    Google Scholar 

  70. US Patent 4, 474, 865 (1988) Layered photoresponsive device having electron transport layer containing derivatives of fluorenylidene methane (Xerox Corp.)

    Google Scholar 

  71. Loutfy RO, Ong SS, Tadros J (1985) J. Imag. Sci. 29: 69

    Google Scholar 

  72. Kruder JE, Limburg WW, Pochan J M, Wychick D (1977) J. Chem. Soc., Perkin Trans. II: 1643

    Google Scholar 

  73. Melz PJ, Champ RB, Chang LS, Chiou C, Keller GS, Liclican LC, Nelman RR, Schattuck MD (1977) Photogr. Sci. Engg. 21: 73

    Google Scholar 

  74. Baltazzi ES (1980) J. Appl. Photogr. Engg. 6: 147

    Google Scholar 

  75. Schlosser G (1978) J. Appl. Photogr. Engg. 4: 118

    Google Scholar 

  76. Dessauer R, Looney CE (1989) in: Sturge JM, Walrath V, Shepp A (eds) Imaging processes and materials, Neblette's Eighth Edition, Van Nostrand Reinhold, New York, p 263

    Google Scholar 

  77. Sprague RH, Fletcher HL, Wainer E (1961) Photgr. Sci. Engg. 5: 98

    Google Scholar 

  78. Stevenson DP, Coppinger GM (1962) J. Amer. Chem. Soc. 84: 149

    Google Scholar 

  79. MacLachlan A (1967) J. Phys. Chem. 71: 718

    Google Scholar 

  80. Cescon LA, Coraor GR, Dessauer R, Silversmith EF, Urban EJ (1971) J. Org. Chem. 36: 2262

    Google Scholar 

  81. Cescon LA, Coraor GR, Dessauer R, Deutsch AS, Jackson HL, MacLachlan A, Marcali K, Potrafke EM, Read RE, Silversmith EF, Urban EJ (1971) J. Org. Chem. 36: 2267

    Google Scholar 

  82. Looney CE, Gordon MD, Laird JP, James EW (1972) Photogr. Sci. Engg. 16: 433

    Google Scholar 

  83. Cohen RL (1971) J. Org. Chem. 36: 2280

    Google Scholar 

  84. DoMinh T (1981) US Patent 4, 308, 341, Non-silver Imaging Compositions Having Improved Speeds and Processing Temperature (Eastman Kodak); also US 4, 243, 737

    Google Scholar 

  85. DoMinh T (1977) J. Org. Chem. 42: 4217

    Google Scholar 

  86. Ledwith A, Purbrick MD (1973) Polymer 14: 521

    Google Scholar 

  87. Davidson RS, Lambeth PF (1967) J. Chem. Soc., Chem. Commun. 1265

    Google Scholar 

  88. Cohen SG, Baumgarten RJ (1967) J. Amer. Chem. Soc. 89: 3471

    Google Scholar 

  89. Osborne CL (1976) J. Radiat. Curing 2 (July)

    Google Scholar 

  90. Chang CT (E. I du Pont de Nemours & Co., Imaging Systems Department), personal communication

    Google Scholar 

  91. Eaton DF, unpublished results for a photopolymer composition containing 5 wt% initiator, 35 wt% difunctional acrylate monomer, and a polymethacrylate binder. The composition was washed out after exposure to ultraviolet light through a step wedge; that is, the photopolymer functioned as a negative resist

    Google Scholar 

  92. Hammond GS, Wamser CC, Chang CT, Baylor C (1970) J. Amer. Chem. Soc. 92: 6362

    Google Scholar 

  93. Cohen AB, Walker P (1989) in: Sturge JM, Walrath V, Shepp A (eds) Imaging Processes and Materials, Neblette's Eighth Edition, Van Nostrand Reinhold, New York, p 226

    Google Scholar 

  94. Eaton DF, Gaffney AP, Horgan JP (1975) unpublished observations

    Google Scholar 

  95. Crivello JV, Lam JHW (1977) Macromol. 10: 1307

    Google Scholar 

  96. Pappas SP (1985) J. Imag. Technol. 11: 146

    Google Scholar 

  97. De Voe RJ, Sahyun MRV, Schmidt E (1989) J. Imaging Sci. 33: 39

    Google Scholar 

  98. Tilley M, Pappas B, Pappas SP, Yagci Y, Schnabel W, Thomas JK (1989) J. Imaging Sci. 33: 62

    Google Scholar 

  99. Eaton DF (1986) Adv. Photochem. 13: 427

    Google Scholar 

  100. Chen C (1965) J. Polym. Sci., A 3: 1107, 1127, 1137, 1155

    Google Scholar 

  101. Miller RJ, Margerum JD, Rust JB, Brault RG, Lackner AM (1974) Macromol. 7: 179

    Google Scholar 

  102. Delzenne GA, Laridon UL (1971) US Patent 3, 597, 343 (Agfa Gevaert)

    Google Scholar 

  103. Chaberek S, Allen RJ, Goldberg G (1965) J. Phys. Chem. 69: 2834

    Google Scholar 

  104. Eaton DF (1979) Photogr. Sci. Engg. 23: 150

    Google Scholar 

  105. Eaton DF (1981) J. Amer. Chem. Soc. 103: 7235

    Google Scholar 

  106. Sanders FW (1983) US Patent 4, 399, 203 (Mead Corp)

    Google Scholar 

  107. Gottschalk P, Neckers DC, Schuster GB (1988) US Patent 4, 772, 530 (Mead Corp)

    Google Scholar 

  108. Diamond AS (1985) Electron. Imaging (October), 35

    Google Scholar 

  109. Arney J (1987) J. Imag. Sci. 31: 27

    Google Scholar 

  110. Arney J (1989) J. Imag. Sci. 33: 1

    Google Scholar 

  111. See Chemical and Engineering News (1988) January 11, p 23 for a description of this interesting system

    Google Scholar 

  112. Chatterjee S, Gottschalk P, Davis PD, Schuster GB (1988) J. Amer. Chem. Soc., 110: 2326

    Google Scholar 

  113. Lan JY, Schuster GB (1985) J. Amer. Chem. Soc. 107: 6710

    Google Scholar 

  114. Lan JY, Schuster GB (1986) Tet. Letts. 27: 4261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Eaton, D.F. (1990). Electron transfer processes in imaging. In: Mattay, J. (eds) Photoinduced Electron Transfer I. Topics in Current Chemistry, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52379-0_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-52379-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52379-6

  • Online ISBN: 978-3-540-46976-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics