Skip to main content

Fundamental concepts of photoinduced electron transfer

  • Conference paper
  • First Online:
Photoinduced Electron Transfer I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 156))

Abstract

Photoinduced electron transfer (PET) is a term reserved to describe the transfer of an electron between photoexcited and ground-state molecules. The energetics and dynamics of PET are shown to depend on the structure of the reactants, the distance separating the reactants, the nature and polarity of the medium, and Coulombic effects. The dynamic interplay of these parameters gives rise to a variety of intermediates, including short-lived Franck-Condon intermediates, exciplexes, contact ion pairs, solvent-separated radical ions, and free ions. An understanding of the spin dynamics of PET can be helpful in sorting out various charge intermediates. The rate of PET is explored on the basis of the classical Marcus-Hush theory and nonclassical, quantum mechanical theories. Special attention is given to the role of electronic and nuclear barriers. A discussion of various procedures used to maximize the efficiency of ion-pair formation is presented, with attention to recent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Albini A. (1981) Synthesis 249

    Google Scholar 

  2. Mattes SL, Farid S (1983) In: Pawda A (ed) Organic photochemistry. Marcel Dekker, New York, p 233

    Google Scholar 

  3. Kavarnos GJ, Turro NJ (1986) Chem. Rev. 86: 401

    Google Scholar 

  4. Connolly JS (ed) (1981) Photochemical conversion and storage of solar energy. Academic, New York

    Google Scholar 

  5. Gust, A, Moore TA (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 267

    Google Scholar 

  6. Hopfield JJ, Onuchic JN, Beratan DN (1988) Science 241: 817

    Google Scholar 

  7. Julliard A, Chanon M (1983) Chem. Rev. 83: 425

    Google Scholar 

  8. Mataga N (1984) Pure & Appl. Chem. 56: 1255

    Google Scholar 

  9. Simon JD, Peters KS (1984) Acc. Chem. Res. 17: 277

    Google Scholar 

  10. Mataga N, Okada T, Kanda Y, Shioyama H (1986) Tetrahedron 42: 6148

    Google Scholar 

  11. For a typical example of the application of CIDNP in PET see: Roth HD, Manion Schilling ML (1981) J. Am. Chem. Soc. 103: 7210

    Google Scholar 

  12. Forster M, Hester RE (1982) Chem. Phys. Lett. 85: 287

    Google Scholar 

  13. Hub W, Klüter U, Schneider S, Dörr F, Oxman J, Lewis FD (1984) J. Phys. Chem. 88: 2308

    Google Scholar 

  14. Paddon-Row MN, Oliver AM, Warman JM, Smit KJ, De Haas MP, Oevering H, Verhoeven JW (1988) J. Phys. Chem. 92: 6958

    Google Scholar 

  15. Peters KS, Snyder GJ (1988) Science 241: 1053

    Google Scholar 

  16. Mattes SL, Farid S (1982) Acc. Chem. Res. 15: 80

    Google Scholar 

  17. Mattay J (1987) Angew. Chem. Int. Ed. Engl. 26: 825

    Google Scholar 

  18. Majima J, Pac C, Nakasone A, Sakurai H (1981) J. Am. Chem. Soc. 103: 4499

    Google Scholar 

  19. Chibisov AK (1981) Russ. Chem. Rev. (Engl. Transl.) 50: 1169

    Google Scholar 

  20. Rehm D, Weller A (1970) Isr. J. Chem. 8: 259

    Google Scholar 

  21. Suppan P (1988) Chimia 42: 320

    Google Scholar 

  22. Lewis FD (1979) Acc. Chem. Res. 12: 152

    Google Scholar 

  23. Weller A (1982) Z. Phys. Chemie NF 133: 93

    Google Scholar 

  24. Crawford MK, Wang Y, Eisenthal KB (1981) Chem. Phys. Lett. 79: 529

    Google Scholar 

  25. Wang Y, Crawford MC, Eisenthal KB (1982) J. Am. Chem. Soc. 104: 5874

    Google Scholar 

  26. Luo XJ, Beddard GS, Porter G, Davidson RS, Whelan TD (1982) J. Chem. Soc., Faraday Trans. I, 78: 3467

    Google Scholar 

  27. Winnik MA (1981) Chem. Rev. 81: 491

    Google Scholar 

  28. Vanderauwera P, De Schryver FC, Weller A, Winnik MA, Zachariasse KA (1984) J. Phys. Chem. 88: 2964

    Google Scholar 

  29. Soumillion JP, Vandereecken P, Van Der Auweraer M, De Schryver FC, Schank A (1989) J. Am. Chem. Soc. 111: 2217

    Google Scholar 

  30. Winstein S, Clippinger E, Fainberg AH, Robinson GC (1954) J. Am. Chem. Soc. 76: 2597

    Google Scholar 

  31. Turro NJ (1981) Pure & Appl. Chem. 53: 259

    Google Scholar 

  32. Turro NJ (1983) Proc. Natl. Acad. Sci. USA 80: 609

    Google Scholar 

  33. Weller A, Staerk H, Treichel R (1984) Faraday Discuss. Chem. Soc. 78: 271

    Google Scholar 

  34. Weller A (1982) Pure & Appl. Chem. 54: 1885

    Google Scholar 

  35. Werner HJ, Staerk H, Weller A (1978) J. Chem. Phys. 68: 2419

    Google Scholar 

  36. Weller A (1982) Z. Phys. Chem. NF, 130: 129

    Google Scholar 

  37. Nolting F, Staerk H, Weller A (1982) Chem. Phys. Lett. 88: 523

    Google Scholar 

  38. Weller A, Nolting F, Staerk H (1983) Chem. Phys. Lett. 96: 24

    Google Scholar 

  39. Weller A (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 343

    Google Scholar 

  40. Nakagaki R, Hiramatsu M, Mutai K, Tanimoto Y, Nagakura S (1987) Chem. Phys. Lett. 134: 171

    Google Scholar 

  41. Nakamura H, Uehata A, Motonaga A, Ogata T, Matsuo T (1987) Chem. Lett. 1987: 543

    Google Scholar 

  42. Usui S, Nakamura H, Ogata T, Uehata A, Motonaga A Matsuo T (1987) Chem. Lett. 1987: 1779

    Google Scholar 

  43. Cannon RD (1980) Electron transfer reactions. Butterworths, London

    Google Scholar 

  44. Marcus RA (1964) Annu. Rev. Phys. Chem. 15: 155

    Google Scholar 

  45. Balzani V, Bolletta F, Gandolfi MT, Maestri M (1978) Top. Curr. Chem. 75: 1

    Google Scholar 

  46. Libby WF (1952) J. Phys. Chem. 56: 863

    Google Scholar 

  47. Libby WF (1963) J. Chem. Phys. 38: 420

    Google Scholar 

  48. Sutin N (1982) Acc. Chem. Res. 15: 275

    Google Scholar 

  49. McCammon JA, Northrup SH, Allison SA (1986) J. Phys. Chem. 90: 3901

    Google Scholar 

  50. Keizer J (1987) Chem. Reviews 87: 167

    Google Scholar 

  51. Marcus RA, Sutin N (1985) Acta Biophysica Acta 811: 265

    Google Scholar 

  52. Steric effects, which may also influence the barrier [37], are not considered in the present discussion

    Google Scholar 

  53. Eberson L (1982) Adv. Phys. Org. Chem. 18: 79

    Google Scholar 

  54. Brunschwig B, Sutin N (1978) J. Am. Chem. Soc. 100: 7568

    Google Scholar 

  55. Sham TK, Hastings JB, Perlman ML (1980) J. Am. Chem. Soc. 102: 5904

    Google Scholar 

  56. Grampp G, Jaenicke W (1985) J. Chem. Soc., Faraday Trans. 2, 81: 1035

    Google Scholar 

  57. Kavarnos G, Fundamentals of photoelectron transfer (In preparation)

    Google Scholar 

  58. Gordy W (1946) J. Chem. Phys. 14: 305

    Google Scholar 

  59. Clark T (1985) A handbook of computational chemistry. Wiley-Interscience, New York

    Google Scholar 

  60. Nakajima T, Toyota A, Kataoka M (1982) J. Am. Chem. Soc. 104: 5610

    Google Scholar 

  61. Wertz DH, Allinger NL (1974) Tetrahedron 30: 1579

    Google Scholar 

  62. Grampp G, Jaenicke W (1984) Ber. Bunsenges. Phys. Chem. 88: 325

    Google Scholar 

  63. Grampp G, Jaenicke W (1984) Ber. Bunsenges. Phys. Chem. 88: 335

    Google Scholar 

  64. For an lucid introduction to polar solvent effects see: Maroncelli M, MacInnis J, Fleming GR (1989) Science 243: 1674

    Google Scholar 

  65. Harrer W, Grampp G, Jaenicke W (1984) Chem. Phys. Lett. 112: 263

    Google Scholar 

  66. Kosower EM, Huppert D (1986) Annu. Rev. Phys. Chem. 37: 127

    Google Scholar 

  67. Miller JR, Calcaterra LT, Closs GL (1984) J. Am. Chem. Soc. 106: 3047

    Google Scholar 

  68. Wasielewski MR, Niemczyk MP, Svec WA, Pewitt EB (1985) J. Am. Chem. Soc. 107: 1080

    Google Scholar 

  69. Irvine MP, Harrison RJ, Beddard GS, Leighton P, Sanders JKM (1986) Chem. Phys. 104: 315

    Google Scholar 

  70. Closs GL, Calcaterra LT, Green NJ, Penfield KW, Miller JR (1986) J. Phys. Chem. 90: 3673

    Google Scholar 

  71. Beratan DN, Onuchic JN (1988) J. Chem. Phys. 89: 6195

    Google Scholar 

  72. Guarr T, McGuire M, Strauch S, McLendon G (1983) J. Am. Chem. Soc. 105: 616

    Google Scholar 

  73. Siders P, Cave RJ, Marcus RA (1984) J. Chem. Phys. 81: 5613

    Google Scholar 

  74. Beratan DN, Hopfield JJ (1984) J. Am. Chem. Soc. 106: 1584

    Google Scholar 

  75. Beratan DN (1986) J. Am. Chem. Soc. 108: 4321

    Google Scholar 

  76. Beratan DN, Onuchic JN, Hopfield JJ (1987) J. Chem. Phys. 86: 4488

    Google Scholar 

  77. Onuchic JN, Beratan DN (1987) J. Am. Chem. Soc. 109: 6771

    Google Scholar 

  78. Hush NS (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 53

    Google Scholar 

  79. Joran AD, Leland BA, Geller GG, Hopfield JJ, Dervan PB (1984) J. Am. Chem. Soc. 106: 6090

    Google Scholar 

  80. Brunschwig BS, Ehrenson S, Sutin N (1986) J. Phys. Chem. 90: 3657

    Google Scholar 

  81. Sutin N (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 73

    Google Scholar 

  82. Bagdasar'yan KS (1984) Russ. Chem. Rev. 53: 623

    Google Scholar 

  83. Kitamura N, Obata R, Kim HB, Tazuke S (1987) J. Phys. Chem. 91: 2033

    Google Scholar 

  84. Kim HB, Kitamura N, Kawanishi Y, Tazuke S (1987) J. Am. Chem. Soc. 109: 2506

    Google Scholar 

  85. Tazuke S, Kitamura N, Kim HB (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 87

    Google Scholar 

  86. Grätzel M (1987) In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, p 435

    Google Scholar 

  87. For examples of recent strategies see: Takagi K, Miyake N, Nakamura E, Usami H, Sawaki Y, Iwamura H (1988) J. Chem. Soc., Faraday Trans. 1, 84: 3475

    Google Scholar 

  88. Marecek V, De Armond AH, De Armond MK (1989) J. Am. Chem. Soc. 111: 2561

    Google Scholar 

  89. Olmsted III J, Meyer TJ (1987) J. Phys. Chem. 91: 1649

    Google Scholar 

  90. Haselbach E, Vauthey E, Suppan P (1988) Tetrahedron 44: 7335

    Google Scholar 

  91. Mataga N, Kanka Y, Asahi T, Miyasaka H, Okada T, Kakitani T (1988) Chem. Phys. 127: 239

    Google Scholar 

  92. Mataga N, Asahi T, Kanda Y, Okada T, Kakitani T (1988) Chem. Phys. 127: 249

    Google Scholar 

  93. Paddon-Row MN, Oliver AM, Warman JM, Smit KJ, de Haas M, Oevering H, Verhoeven JW (1988) J. Phys. Chem. 92: 9658

    Google Scholar 

  94. Moore TA, Gust D, Mathis P, Mialocq JC, Chachaty C, Bensasson RV, Land EJ, Doizi D, Liddell PA, Lehman WR, Nemeth GA, Moore AL (1984) Nature 307: 630

    Google Scholar 

  95. Gust D, Moore TA, Makings LR, Liddell PA, Nemeth GA, Moore AL (1986) J. Am. Chem. Soc. 108: 8028

    Google Scholar 

  96. Gust D, Moore TA, Liddell PA, Nemeth GA, Makings LR, Moore AL, Barrett D, Pessiki PJ, Bensasson RV, Rougée M, Chachaty C, De Schryver FC, Van der Auweraer M, Holzwarth AR, Connolly JS (1987) J. Am. Chem. Soc. 109: 846

    Google Scholar 

  97. Finckh P, Heitele H, Volk M, Michel-Beyerle ME (1988) J. Phys. Chem. 92: 6584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Kavarnos, G.J. (1990). Fundamental concepts of photoinduced electron transfer. In: Mattay, J. (eds) Photoinduced Electron Transfer I. Topics in Current Chemistry, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52379-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-52379-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52379-6

  • Online ISBN: 978-3-540-46976-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics