Antonov rule and multilayer wetting in “q state” models

  • Alain Messager
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 354)


Surface Tension Gibbs Measure Layer Wetting Spreading Coefficient Correlation Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Gibbs, On the equilibrium of heterogeneous substances, Trans.Conn. Acad. Vol III pp 343–524 (1878). Asso in The Collected Works of J. Willard Gibbs, Vol. 1, Longmans, Green, New-York (1928) p.258.Google Scholar
  2. 2.
    R. J. Baxter, Potts model at the critical temperature, J. Phys. C: Solid State Phys. 6: L445 (1973), Magnetization discontinuity of the two dimensional Pott model, J. Phys. A: Math. Gen. 15: 3329 (1982)Google Scholar
  3. 3.
    R. Kotecky, and S. B. Shlosman, First order phase transitions in large entropy lattice models, Commun. Math. Phys. 83: 493 (1982)Google Scholar
  4. 4.
    L. Laanait, A. Messager and J. Ruiz, Phases coexistence and surface tensions for the Potts model, Commun. Math. Phys. 105: 527 (1986)Google Scholar
  5. 5.
    R. Kotecky, L. Laanait, A. Messager and J. Ruiz, The q-state Potts model in the standard Pirogov-Sinaï theory, J.Stat.Phys. (1989) Google Scholar
  6. 6.
    J. De Coninck, A. Messager, S. Miracle-Solé and J. Ruiz, A study of perfect wetting for Potts and Blume-Capel models with correlation inequalities, J. Stat.Phys. 52: 45 (1988).Google Scholar
  7. 7.
    A. Messager, S. Miracle-Solé and J. Ruiz, and S. B. Shlosman, “Interface in Potts model 2: Antonov rule and rigidity of the order disorder interface” Preprint C.P.T. June 1989Google Scholar
  8. 8.
    F.Dunlop, L. Laanait, A. Messager, S.Miracle Sole, J.Ruiz, Multilayer wetting in “q state” models. preprint C.P.T. June 89.Google Scholar
  9. 9.
    C. E. Pfister, Translation invariant equilibrium states in ferromagnetic abelian systems, Commun. Math. Phys. 86: 375 (1982)Google Scholar
  10. 10.
    R.J. Baxter, “Exactly Solved Models in Statistical Mechanics” Academic Press 1982Google Scholar
  11. 11.
    F. Dunlop, Correlation inequalities for multicomponent rotators, Commun. Math. Phys. 49: 247 (1976)Google Scholar
  12. 12.
    H. Kunz, C. E. Pfister and P. A. Vuillermot, Correlation inequalities for some classical vector models, Phys. Lett. 54A: 428 (1975), J. Phys. A: Math. Gen. 9: 1673(1976)Google Scholar
  13. 13.
    J. L. Lebowitz, G.H.S. and others inequalities, Commun. Math. Phys. 35: 87 (1974)Google Scholar
  14. 14.
    J. Ginibre, General formulation of Griffiths inequalities, Commun. Math. Phys. 16: 310 (1970)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Alain Messager
    • 1
  1. 1.Centre de Physique ThéoriqueCNRS-LuminyMarseille Cedex 9France

Personalised recommendations