On connections between classical and constructive semantics

  • Starchenko S. S. 
  • Voronkov A. A. 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 417)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolmogorov, A.N.: Zur Deutung der intuitionistische Logic. Math. Z. (1932), v.35Google Scholar
  2. 2.
    Kleene S.C.: On the interpretation of intuitionistic number theory. J Symb. Logic, (1945), v.10, 109–124Google Scholar
  3. 3.
    Kreisel G.: Interpretation of analysis by means of constructive functionals of finite types. Constructivity of Mathematics, North Holland, (1959), 101–128Google Scholar
  4. 4.
    Gödel K.: Uber eine noch nicht benutzte Erweiterung des finiten Standpunktes. Dialectica, 3/4, (1958), v.12, 280–287Google Scholar
  5. 5.
    Kleene S.C.: Vesley R.Y. The foundations of intuitionistic mathematics. North Holland, (1956)Google Scholar
  6. 6.
    Howard W.A.: The formulae-as-types notion of construction. Festschrist on the Occasion of H.B.Curry's 80th Birthday, Academic Press, (1980), 479–490Google Scholar
  7. 7.
    Diller J.: Modified realization and the formulae-as-types notion, Ibid, 491–502Google Scholar
  8. 8.
    McCarthy Ch.: Realizability and recursive set theory. Ann. Pure and Appl. Log., 2 (1986), 32, 153–184Google Scholar
  9. 9.
    Ershov Yu.L.: Decidability problems and constructive models. Moscow, Nauka, (1980) (In Russian)Google Scholar
  10. 10.
    Nepeivoda N.N., Sviridenko D.I.: On the theory of program synthesis, Trudy Math. Inst., 2(1982), 159–175Google Scholar
  11. 11.
    Voronkov A.A.: Automatic program synthesis and realizability. Matematicheskie Osnovy Raspoznavaniya Obrasov, Erevan, Acad. Sci. of Armenian SSR, (1985), 38–40 (In Russian)Google Scholar
  12. 12.
    Plisko V.E.: On language with constructive logical connectives. Soviet Math. Doklady, 1 (1987), v.296Google Scholar
  13. 13.
    Voronkov A.A: Model theory based on constructive notion of truth. Trudy Math. Inst., Novosibirsk, (1988), v.8, 25–42 (In Russian)Google Scholar
  14. 14.
    Voronkov A.A.: Logic programs and their synthesis. Preprint of Math. Inst., Novosibirsk, 23(1986), p.32 (In Russian)Google Scholar
  15. 15.
    Voronkov A.A.: Synthesis of logic programs. 24(1986), p.42.Google Scholar
  16. 16.
    Ershov Yu.L.: Theory of enumerations. Moscow, Nauka, 1977 (In Russian)Google Scholar
  17. 17.
    Scott D.S.: Domains for denotational semantics Lect. Notes in Comp. Sci. 1982. v.140. 577–612Google Scholar
  18. 18.
    Kamimura T., Tang J.: Effectively given spaces. Theoretical Comp. Sci. (1984)Google Scholar
  19. 19.
    Harrop R.: Concerning formulas of the types A→BvC, A→(Ex)B(x) in intuitionistic formal system. J. Symb. Logic, 1(1962), v.27, 27–32Google Scholar
  20. 20.
    Goad C.A.: Computational uses of the manipulation of formal proofs. Stanford Univ. Tech. Report, CS-80-819, (1980), p.122Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Starchenko S. S. 
    • 1
  • Voronkov A. A. 
    • 1
  1. 1.Institute of MathematicsNovosibirsk-90USSR

Personalised recommendations