Skip to main content

Inductively defined types

Part of the Lecture Notes in Computer Science book series (LNCS,volume 417)

Keywords

  • Positive Operator
  • Type Theory
  • Elimination Rule
  • Inductive Type
  • Computation Rule

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preliminary version

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-52335-9_47
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-46963-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aczel. “The strength of Martin-Löf's intuitionistic type theory with one universe.” In the Proceedings of the Symposium on Mathematical Logic, Helsinki, 1977.

    Google Scholar 

  2. R. Backhouse. “On the meaning and construction of the rules in Martin-Löf's theory of types.” Technical Report CS 8606, University of Groningen, 1986.

    Google Scholar 

  3. E. Bishop. “Foundations of Constructive Analysis.” McGraw-Hill, New-York, 1967.

    Google Scholar 

  4. C. Böhm and A. Berarducci. “Automatic synthesis of typed A-programs on term algebras.” Theoretical Computer Science, 39, 1985.

    Google Scholar 

  5. A. Church. “A formulation of the simple theory of types.” Journal of Symbolic Logic 5, 1940.

    Google Scholar 

  6. Th. Coquand. “An introduction to type theory.” Course notes, Albi, 1989.

    Google Scholar 

  7. Th. Coquand. “An Analysis of Girard's Paradox.” Proceedings of the first Logic in Computer Science, Boston, 1986.

    Google Scholar 

  8. P. Dybjer. “Inductively Defined Types in Martin-Löf's Set Theory.” Unpublished manuscript, 1987.

    Google Scholar 

  9. P. Dybjer. “An inversion principle for Martin-Löf's type theory.” To appear in the proceedings of Bastad, 1989.

    Google Scholar 

  10. K. Gödel. “On a hitherto unexploited extension of the finitist viewpoint.” Translation by W. Hodge, appeared in Journal of Philosophical Logic 9 (1980).

    Google Scholar 

  11. D. Hilbert. “On the Infinite.” Published in Van Heijenoort.

    Google Scholar 

  12. P. Martin-Löf. “Notes on Constructive Mathematics.” Almqvist & Wiksell, Stockholm.

    Google Scholar 

  13. P. Martin-Löf. “Intuitionistic Type Theory.” Bibliopolis, 1980.

    Google Scholar 

  14. P. F. Mendler. “Inductive Definition in Type Theory.” Ph. D. Thesis, Cornell, 1987.

    Google Scholar 

  15. P.J. Landin. “The mechanical evaluation of expressions.” Comput. J. 6, 1964.

    Google Scholar 

  16. Z. Luo. “CC and its meta Theory.” LFCS report ECS-LFCS-88-57, Dept. of Computer Science, University of Edinburgh.

    Google Scholar 

  17. Z. Luo. “ECC, an Extended calculus of Constructions.” Proc. of the Fourth IEEE Symposium on Logics in Computer Science, June 1989, Asilomar, California, U.S.A.

    Google Scholar 

  18. Ch. Paulin-Mohring. “Extraction de programmes dans le Calcul des Constructions.” Thèse, Université Paris 7, 1989.

    Google Scholar 

  19. D. Normann. “Inductively and recursively defined types.” A seminar report, Department of Mathematics, University of Oslo, 1987.

    Google Scholar 

  20. L. C. Paulson. “A formulation of the Simple Theory of Types (for Isabelle).” Unpublished manuscript, Cambridge, 1989.

    Google Scholar 

  21. F. Pfenning and Ch. Paulin-Mohring. “Inductively Defined Types in the Calculus of Constructions.” To appear in the proceedings of MFPLS'89, 1989.

    Google Scholar 

  22. J.C. Reynolds. “Polymorphism is not Set-Theoretic.” Lecture Notes in Computer Science 173, Springer-Verlag, 1984.

    Google Scholar 

  23. B. Russell and A.N. Whitehead. “Principia Mathematica.” Volume 1,2,3 Cambridge University Press, 1912.

    Google Scholar 

  24. J.R. Shoenfield. “Mathematical Logic.” Addison-Wesley, 1967.

    Google Scholar 

  25. S.S. Wainer. “Slow Growing Versus Fast Growing.” Journal of Symbolic Logic, Volume 54, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coquand, T., Paulin, C. (1990). Inductively defined types. In: Martin-Löf, P., Mints, G. (eds) COLOG-88. COLOG 1988. Lecture Notes in Computer Science, vol 417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52335-9_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-52335-9_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52335-2

  • Online ISBN: 978-3-540-46963-6

  • eBook Packages: Springer Book Archive