Reconstructability analysis and its RE — interpretation in terms of pragmatic information

  • Klaus Kornwachs
Systems Theory And CAST
Part of the Lecture Notes in Computer Science book series (LNCS, volume 410)


Reconstructability Analysis (RA) has been developed by G.J. Klir and others in order to get a method with which it is possible to obtain information about the structure of a system when only behavioral data are available. The elicitation of an adequate structure can be regarded as a gain of information, when its information content is compared to the information content of the behavioral data. Simulation experiments can be used to estimate the information distance between the reconstructed behavior and the original system behavior. The results are used to reinterpret the gain of information in terms of pragmatic information, i.e. in novelty and confirmation. It is demonstrated how the concept of pragmatic information might be able to explain the rationale of computer aided inductive reasoning.


Simulation Experiment Behavioral Data System Description Information Gain Inductive Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BOX, G.E.P., JENKINS, G.M.: Time Series Analysis — Forcasting and Control. Holden Day, San Francisco 1976Google Scholar
  2. CELLIER, F.: SAPS II: System Approach Problem Solver. The Tool and its Application. CERL — Report 87/01 College of Engineering and Mines, University of Arizona, Tuscon 1987Google Scholar
  3. CELLIER, F., YANDELL, D.W.: SAPS II: A new Implementation of the System Approach Problem Solver. Int. J. Gen. Systems 12(1987/4) pp. 307–322Google Scholar
  4. CONANT, R.: Extended Dependency Analysis of Large Systems. Part I: Dynamic Analysis. Int.J. Gen. Systems 14(1888/2) pp.97–123Google Scholar
  5. CONANT, R.: Extended Dependency Analysis of Large Systems. Part II: Static Analysis. Int.J. Gen. Systmes 14(1988/2) pp.125–141Google Scholar
  6. CHRISTENSEN, R.: Foundation of Inductive Reasoning. Entropy Ltd., London (Mass.) 1980Google Scholar
  7. CHRISTENSEN, R.: Entropy Minimax Multivariate Statistical Modelling. I. — Theories. Int.J. Gen. Systems 11(1985) pp.231–277Google Scholar
  8. FOWLER, G., HARALICK, R., CRAY, F.G., FEUSTEL, CH., GRINSTEAD, CH.: Efficient Graph Automorphism by Vertex Partioning. Artificial Intelligemnce 21(1983) pp.245–269Google Scholar
  9. GERNERT,D.: Inkrementelle Modellbildung und Formalismen zur Beschreibung des Strukturwandels in offenen Systemen. In: Kornwachs,K.(Ed.): Offenheit-Zeitlichkeit-Komplexitaet; zur Theorie der Offenen Systeme. Campus Frankfurt New York 1984, S.18–50Google Scholar
  10. HAI, A., KLIR, G.J.: An empirical investigation of reconstructability analysis: Probabilistic Systems. Int. J. Man Machine Studies 22 (1985), pp.163–192Google Scholar
  11. HARRAY, F.: Graph Theory. Addison Wesley, Reading (Mass.) 1972Google Scholar
  12. HIGASHI, M., KLIR, G.J.: On the notion of distance representing information closeness: possibility and probability distributions. Int.J.Gen.Systems 9(1983) pp.103–115Google Scholar
  13. KLIR, G.J.: Identification of Generative Structures in Empirical Data. Int.J.Gen.Systems 3(1976) pp. 89–104Google Scholar
  14. KLIR, G.J.: Architecture of Problem Solving. Plenum Press, New York, London 1985Google Scholar
  15. KLIR, G.J.: Where do we stand on measures of uncertainty, ambiguity, fuzziness and the like? Fuzzy Sets and Systems 24 (1987) pp.141–160Google Scholar
  16. KLIR, G.J., MARIANO, M., PITARELLI, M., KORNWACHS, K.: The Potential of Reconstructability Analysis for Production Research. Int. J. Production Research 26(1988/4) pp.629–645Google Scholar
  17. KLIR, G.J., PARVIZ, B.: General Reconstruction Characteristics of Probabilistic and Possibilistic systems. Int.J. Man-Machine Studies 25(1986) pp.367–397Google Scholar
  18. KLIR, G.J., PARVIZ, B., HIGASHI, M.: Relationship between true and estimated possibilistic systems and their reconstructions. Int.J.Gen.Systems 12(1986) pp.319–331Google Scholar
  19. KORNWACHS, K.: Cognition and Complementarity. In: CARVALLO, M.(ed.): Nature, Cognition and Systems I. Kluwer Acad.Publ., Amsterdam 1988, pp.95–127Google Scholar
  20. KORNWACHS, K., LUCADOU, W. von: Pragmatic Information and Non-Classical Systems. In: TRAPPL, R.(ed.): Cybernetic and Systems Research. North Holland, Amsterdam 1982, pp.191–197Google Scholar
  21. KORNWACHS, K., LUCADOU, W. von: Some Notes on Information and Interaction. In: TRAPPL, R. (ed.): Cybernetic and Systems Research 2. North Holland, Amsterdam 1984, pp.9–14Google Scholar
  22. PADULO, L., ARBIB, M.A.: System Theory. Hemisphere Publ., Washington 1974Google Scholar
  23. SPRIET, J.A., VANSTEENKISTE, G.C.: Computer Aided Modelling and Simulation. Academic Press, London 1982Google Scholar
  24. VALDEZ-PEREZ, R.E., CONANT, R.C.: Information Loss to Data Quantization in Reconstructability Analysis. Int. J.Gen. Systems 9 (1983), pp 235–247Google Scholar
  25. WEDDE, H. (ed.): Model Adequacy. Proceedings of the International Working Conference on Model Realism, Bad Honneff 1982. Pergamon Press, London 1983Google Scholar
  26. WEIZSÄCKER, E.U.: Pragmatische Information. In: WEIZSACKER,E.U.(ed.): Offene System I. Klett, Stuttgart 1974, pp.82–113Google Scholar
  27. WEIZSÄCKER, E.U., WEIZSÄCKER, Ch.: Fehlerfreundlichkeit. In: KORNWACHS, K.(Ed.): Offenheit — Zeitlichkeit — Komplexität. Zur Theorie der offenen Systeme, Campus, Frankfurt-New York 1984, pp. 166–201Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Klaus Kornwachs
    • 1
  1. 1.Fraunhofer Institute for Industrial EngineeringUniversity of StuttgartStuttgartGermany

Personalised recommendations