Advertisement

Adaptive data stores

  • R. Morrison
  • A. Dearle
  • C. D. Marlin
Knowledge Acquisition And Representation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 406)

Abstract

Adaptive data is characterised by its ability to react to changes in the environment. Such data frequently occurs in Artificial Intelligence applications where the knowledge base may alter dynamically to adapt to new stimuli. Such systems are usually written in typeless, dynamically bound languages. Here we describe the concept of persistence and show how it may also be used in conjunction with a strong type system employing flexible binding mechanisms to construct adaptive systems. This has the advantage of greater static checking with all of its attendant benefits, without losing flexibility.

Keywords and phrases

persistence strong typing dynamic binding production systems adaptive systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. "An approach to persistent programming". Computer Journal, 26, 4 (November 1983), pp. 360–365.Google Scholar
  2. 2.
    Atkinson, M.P. & Morrison, R. "Procedures as persistent data objects". ACM. TOPLAS, 7, 4 (October 1985), pp. 539–559.Google Scholar
  3. 3.
    Atkinson, M.P., Morrison, R. & Pratten, G.D. "Designing a persistent information space architecture". Proc. 10th IFIP World Congress, Dublin (September 1986), pp. 115–120.Google Scholar
  4. 4.
    Boehm, B.W. "Understanding and controlling software costs". Proc. 10th IFIP World Congress, Dublin (September 1986), North-Holland, Amsterdam, pp. 703–714.Google Scholar
  5. 5.
    Dearle, A. & Brown, A.L. "Safe browsing in a strongly typed persistent environment". Computer Journal, to appear (1988).Google Scholar
  6. 6.
    Dearle, A. "Environments: a flexible binding mechanism to support system evolution". Proc. HICSS-22, Hawaii (January 1989).Google Scholar
  7. 7.
    Jacquart, R. "Software engineering and knowledge engineering: mutual relations". Proc. 10th IFIP World Congress, Dublin (September 1986), North-Holland, Amsterdam, pp. 725.Google Scholar
  8. 8.
    McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. & Levin, M.I. The Lisp Progammers Manual. MIT Press, Cambridge, Massachusetts (1962).Google Scholar
  9. 9.
    Morrison, R., Bailey, P.J., Brown, A.L., Dearle, A. & Atkinson, M.P. "A persistent store as an enabling technology for an integrated project support environment". Proc. IEEE 8th International Conference on Software Engineering, London (August 1985), pp. 166–172.Google Scholar
  10. 10.
    Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. "An integrated graphics programming environment". Computer Graphics Forum, 5, 2 (March 1986), pp. 147–158.Google Scholar
  11. 11.
    Morrison, R., Brown, A.L., Carrick, R., Connor, R.C., Dearle, A. & Atkinson, M.P. "Polymorphism, persistence and software reuse in a strongly typed object-oriented environment". Software Engineering Journal (December 1987).Google Scholar
  12. 12.
    Morrison, R., Brown, A.L., Carrick, R., Connor, R.C. & Dearle, A. "On the integration of object-oriented and process-oriented computation in persistent Environments". Proc. 2nd International Workshop on Object-Oriented Database Systems, West Germany (1988).Google Scholar
  13. 13.
    Morrison, R., Brown, A.L., Carrick, R., Connor, R.C. & Dearle, A. "The Napier Reference Manual". University of St Andrews, St Andrews, Scotland (1988).Google Scholar
  14. 14.
    Winograd, T. Understanding Natural Language. Academic Press, New York (1972).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. Morrison
    • 1
  • A. Dearle
    • 1
  • C. D. Marlin
    • 1
  1. 1.Department of Computational ScienceUniversity of St Andrews North HaughSt Andrews FifeU.K.

Personalised recommendations