Skip to main content

An explicit Runge-Kutta method for turbulent reacting flows calculations

  • Part 2: Contributed Lectures
  • Conference paper
  • First Online:
Numerical Combustion

Part of the book series: Lecture Notes in Physics ((LNP,volume 351))

Abstract

The paper deals with a numerical method for the solution of the conservation equations governing steady, reacting, turbulent viscous flows in two dimensional geometries, in both cartesian and axisymmetric coordinates. These equations are written in Favre-averaged form and closed with a first order model. A two-equation K-ɛ model, where low Reynolds number and compressibility effects are included, and a modified eddy-breack up model are used to simulate fluid mechanics turbulence, chemistry and turbulence-combustion interaction. The solution is obtained by using a pseudo-unsteady method with improved perturbation propagation properties. The equations are discretized in space by using a finite volume formulation. An explicit, multi-stage, dissipative Runge-Kutta algorithm is then used to advance the flow equations in the pseudo-time. The method is applied to the computation of both diffusion and premixed turbulent reacting flows. The computed temperature distributions compare favorably with experimental data.

Actually at Sistemi Elettronici Tecniche di Controllo, Centro Ricerche FIAT, Strada Torino 50, 10043 Orbassano, Italy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AE:

Arrhenius activation energy

c:

concentrations fluctuations parameter

C:

constant

CFL:

Courant number

D:

diffusion vector

e:

specific internal energy

E:

total specific energy

f:

function

f:

unknown vector

F:

flux tensor

H:

total enthalpy

H:

optimization matrix

Hp :

turbulence kinetic energy

I:

identity matrix

j:

index of the spatial discretization

k:

index of the multistage algorithm

L:

length scale of turbulent motions

m:

index of the temporal discretization

M:

Mach number

n:

wall normal

N:

unit outward normal

NV:

updating rate

p:

pressure

P:

production of turbulence kinetic energy

PF:

Arrhenius prefactor

Pr:

Prandtl number

q:

heat flux vector

Q:

work due to turbulence

R:

low Reynolds number term

Re:

Reynolds number

s:

stoichiometric ratio

S:

source vector

Sc:

Schmidt number

t:

time

T:

residual

tu:

turbulence intensity

v:

volume

V:

velocity

x:

axial coordinate

y:

radial coordinate

Y:

mass fraction

β:

perturbation speed

γ:

specific heat ratio

δ r:

characteristic volume dimension

δ t:

time step

δ Σ:

surface area

Δ H:

chemical heat release

χ:

thermal conductivity

θ:

multistage scheme coefficient

Σ:

boundary of the fixed volume

ϱ:

density

μ:

viscosity coefficient

Γ:

diffusion coefficient

τ:

viscous stress tensor

Ω:

artificial viscosity coefficient

ε:

turbulence kinetic energy dissipation rate

ϕ:

Schwab-Zeldovich function

ϕ:

reaction rate

i:

inviscid

fu:

fuel

l:

laminar

ox:

oxidizer

t:

turbulent

v:

viscous

References

  1. Mularz, E.J., and Sockol, P.M., “Chemical Reacting Flows,” in “Aeropropulsion '87. Session 3-Internal Fluid Mechanics Research”, NASA CP 10003, 1987.

    Google Scholar 

  2. Boretti, A.A.and Martelli, F., “Accuracy and Efficiency of Time Marching Approach for Combustor Modelling,” paper presented at the “AGARD Fluid Dynamics Panel Simposium on Validation of ComputationalFluid Dynamics”, Lisbon, Portugal, May 1988.

    Google Scholar 

  3. Boretti, A.A.and Martelli, F., “Application of a Fast Pseudo Unsteady Method to Steady Compressible Turbulent Reacting Flows,” proceedings of the “First National Fluid Dynamic Congress,” Cincinnati, Ohio, July 1988.

    Google Scholar 

  4. Arts, A., “Cascade Flow Calculations Using a Finite Volume Method,” in “Numerical Methods in Turbomachinery Bladings”, VKI LS 1982-05, Bruxelles, Belgium, 1982.

    Google Scholar 

  5. Bray, K.N.C., “Turbulent Flows with Premixed Reactants,” in Libby, P.A., and Williams, F.A., Turbulent Reacting Flows, Springer-Verlag, New-York, 1981.

    Google Scholar 

  6. Jameson, A.,”Transonic Flow Calculations,” Princeton University MAE Report 1651, 1983.

    Google Scholar 

  7. Jorgenson, P.C.E., and Chima,R.V.,”An Explicit Runge-Kutta Method for Unsteady Rotor-Stator Interaction,” NASA TM 100787, 1988.

    Google Scholar 

  8. Lin, C.-S., “Numerical Calculations of Turbulent Reacting Flow in a Gas-Turbine Combustor,” NASA TM 89842, 1987.

    Google Scholar 

  9. Essers, J.A., “Artificial Evolution Techniques for Transonic Flows,” in “Numerical Methods in Turbomachinery Bladings”, VKI LS 1982-05, Bruxelles, Belgium, 1982.

    Google Scholar 

  10. Viviand,H.,andVeuillot,J.P.,”Methodespseudo-instationnaires pourlecalcul d'ecoulements transoniques,” ONERA TP no.1984-69, 1984.

    Google Scholar 

  11. Hirt, C.W., Cloutman, L.D., and Romero, N.C., “SOLA-ICE: A Numerical Solution Algorithm for Transient Compressible Fluid Flows,” Los Alamos Laboratory Report LA-6236, 1976.

    Google Scholar 

  12. Boretti, A.A., and Martelli, F.,“merical Modeling of Turbulent Combustion in Premixed Flows,” proceedings of the “1988 National Heat Transfer Conference”, Houston, Texas, July 1988.

    Google Scholar 

  13. Dupoirieux, F., “Numerical Calculations of Turbulent Reactive Flows and Comparison with Experimental Results,” ONERA T.P. 1986-80.

    Google Scholar 

  14. Cline, M.C., “VNAP2: A Computer Program for Computation of Two-Dimensional, Time-Dependent, Compressible, Turbulent Flow,” Los Alamos Report LA-8872, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Dervieux Bernard Larrouturou

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Boretti, A.A. (1989). An explicit Runge-Kutta method for turbulent reacting flows calculations. In: Dervieux, A., Larrouturou, B. (eds) Numerical Combustion. Lecture Notes in Physics, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51968-8_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-51968-8_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51968-3

  • Online ISBN: 978-3-540-46866-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics