Advertisement

Analogical reasoning for second generation expert systems

  • Dieter Poetschke
Submitted Papers Analogical Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 397)

Abstract

In this paper we give a critical view on current rule oriented expert systems and show that there are arguments against the rule oriented strategy from the practical as well as the theoretical point of view.

Instead of this strategy we propose a formalization of analogical reasoning, which leads for second order expert systems to a case oriented strategy. In some areas of artificial intelligence certain approaches to the formalization of analogy exist. But a unified mathematical theory of analogy is needed. After a short description of a possible general mathematical approach to analogical reasoning we will describe some applications and implications of this new method. The potential applications for analogical reasoning have one difficulty in common: the used knowledge is to represent in a structural way for detecting similarities and analogies on a certain level.

Keywords

Expert systems of second generation analogical inference rule oriented strategy case oriented strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McDermott, J.: Making expert systems explicit, in: IFIP'86. H.-J. Kruger (ed.), Elsevier Science Publishers (North Holland) 1986, pp.539–544.Google Scholar
  2. 2.
    Steels, L.: Second Generation Expert Systems, Future Generation Computer Systems (FGCS)1(985), No.4,pp.213–221.Google Scholar
  3. 3.
    Ernst, M.L., Ojha, H.E.: Business applications of artificial intelligence KBS's, FGCS 2(1986), pp. 173–186Google Scholar
  4. 4.
    van de Riet, R.P.: Problems with expert systems? FGCS 3(1987), pp.11–16.Google Scholar
  5. 5.
    Harmelen, F.v.: A categorisation of meta-level architectures. AISB-87 Conference, April 1987.Google Scholar
  6. 6.
    Dincbas, M., Lepape, J.P.: Metacontrol of logic programs in METALOG. Proc. Int. Conf. on FGCS Tokyo 1984, pp. 361–372.Google Scholar
  7. 7.
    Analogical and Inductive Inference. Int. Workshop, October 6–10,1986. K.-P. Jantke (ed.)Proc.in: Lecture Notes in Computer Science, vol.265, Springer-Verlag 1987.Google Scholar
  8. 8.
    Richer, M.H.: An evaluation of expert systems development tools, Expert Systems 3(1986), 3,pp.166–182.Google Scholar
  9. 9.
    Kowalski, R.A.: Predicate Logic as Programming Language. Proc. IFIP 1974, North Holl.Google Scholar
  10. 10.
    Aikens, J.S. et al.: PUFF — an expert system for interpretation of pulmonary function data, in: Comp.a. Biomed. Research 16(1963), pp.199–208.Google Scholar
  11. 11.
    Buchanan, B.G., Shortliffe, E.M.: Rule-based expert systems — the MYCIN experiments of the Stanford Heuristic Programming Project. Addison-Wesley 1984.Google Scholar
  12. 12.
    Shortliffe, E.H. et al.: ONCOCIN: An expert system for oncology protocol management, in: Proc. 7th IJCAI, Vancouver 1981, pp. 876–881.Google Scholar
  13. 13.
    Vamos, T. et al.: Pattern recognition combined with logic — a decade's experience with an unusual medical expert system. Working paper E/39, SZTAKI, Budapest 1986.Google Scholar
  14. 14.
    Vamos, T. et al.: Knowledge engineering as a human interface problem — lessons building an expert system in neonatology, in: IFAC/IFIP/IFORS/IEA Conf. on Analysis, Design and Evaluation of Man-Machine Systems, Varese, Italy (eds. G. Johannsen et al.) September 10–12, 1985, pp. 136–140.Google Scholar
  15. 15.
    The First International Conf. on Art. Int. and Law. Proceedings. Boston 1987. ACM Press 1987Google Scholar
  16. 16.
    Fiedler,H., Gordon, T.F.: Recht und Rechtsanwendung als Paradigma wissensbasierter Systeme, in: W. Brauer, W. Wahlster (eds.): Wissensbasierte Systeme. Springer-Verlag Berlin 1987.Google Scholar
  17. 17.
    Gordon, T.F.: OBLOG-2: A hybrid knowledge representation system for defeasible reasoning, in: /15/, pp.231 f.Google Scholar
  18. 18.
    McCarty, L.T., Sridharan, N.S.: The representation of an evolving system of legal consepts:II. Prototypes and deformations, in: Proc. IJCAI 1981, pp. 197f.Google Scholar
  19. 19.
    Vamos, T.: Metalanguages — conceptual models.Symp. on AI and Expert Systems. Berlin-West, May 1987.Google Scholar
  20. 20.
    Poetschke,D.: Toward a mathematical theory of analogical reasoning. Proc. 1982 European Conf. on Artificial Intelligence. Orsay/France, July 11–14, 1982, pp. 48–53.Google Scholar
  21. 21.
    Winston, P.H.: Learning and reasoning by analogy. CACM 23(1980),pp.689–703.Google Scholar
  22. 22.
    Haraguchi, M.: An analogy as a partial identity. Proc. The Logical Programming Conf. 1983, Tokyo, Sponsored by the ICOT, sec. 11–2.Google Scholar
  23. 23.
    Haraguchi, M.: Analogical reasoning using transformations of rules, Proc. Logical Programming Conf. '85, Tokyo LNCS 221(1986), pp.56–65.Google Scholar
  24. 24.
    Owen, S.: Heuristics for analogy matching, in: B. du Boulay, D. Hogg, L. Steels: Advances in Art. Int. II (ECAI'86), North Holland 1987, pp.69–82.Google Scholar
  25. 25.
    Poetschke, D.: Analogical reasoning using graph transformations. In: Lecture Notes in Computer Science vol.265, s. /7/, pp.135–144..Google Scholar
  26. 26.
    Poetschke,D.: Formalizing analogical reasoning, in: W. Bibel, K.P.Jantke (eds.): Mathematical Methods of Specifications and Synthesis of Software (MMSSS)'85., Berlin 1986, pp. 215–218.Google Scholar
  27. 27.
    Thiele, H.: A model oriented approach to analogy, in: /7/, pp.196–208.Google Scholar
  28. 28.
    Tangwongsan, S., Fu, K.S.: An application of learning a robot planning. Int. J. of Computer and Inf. Sciences 8(1979). pp. 303–333.Google Scholar
  29. 29.
    Taylor, R.H.: A synthesis of manipulator control programs from task level specifications. Memo AIM-282, Stanford Art. Int.Lab., 1976.Google Scholar
  30. 30.
    Ambler, A.P., Popplestone, R.J.: Inferring the position of bodies from specified relationships. Art. Int. 6(1975), pp. 157–174.Google Scholar
  31. 31.
    Poetschke, D.: Synthesis of programs for intelligent robots by analogy algorithms, in: Art. Int. and Information-Control Systems of Robots '87. I. Plander (ed.). Elsevier Science Publ. (North Holland) 1987, pp. 411–415.Google Scholar
  32. 32.
    Ulrich, J.W., R. Moll: Program synthesis by analogy. Symp. Art. Int. and Programming Languages, Rochester, N.Y., Aug. 1977, pp. 22–28.Google Scholar
  33. 33.
    Evans, T.G.: A program for the solution of a class of geometric-analogy intelligence test questions, in: M. Minsky (ed.): Semantic Information Processing, MIT Press 1968, pp.271–353.Google Scholar
  34. 34.
    Funt, B.V.: Analogical modes of reasoning and process modeling. Computer 16(1983),10,pp.99–104.Google Scholar
  35. 35.
    Yokomori, T.: Logic Program Forms. In: New Generation Computing 4(1986),pp.305–319.Google Scholar
  36. 36.
    Gergely,T., Vershinin, K.P.: Natural mathematical texts vs. programs, in: MMSSS '85 s. /26/,pp.83–100.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Dieter Poetschke
    • 1
  1. 1.Department Artificial Intelligence Central Institute of Cybernetics and Information ProcessesAcademy of Sciences GDRBerlinGDR

Personalised recommendations