Advertisement

Some aspects of analogy in mathematical reasoning

  • Manfred Kerber
Submitted Papers Analogical Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 397)

Abstract

An important research problem is the incorporation of “declarative” knowledge into an automated theorem prover that can be utilized in the search for a proof. An interesting proposal in this direction is Alan Bundy's approach of using explicit proof plans that encapsulate the general form of a proof and is instantiated into a particular proof for the case at hand. We give some examples that show how a “declarative” highlevel description of a proof can be used to find proofs of apparently “similiar” theorems by analogy. This “analogical” information is used to select the appropriate axioms from the database so that the theorem can be proved. This information is also used to adjust some options of a resolution theorem prover. In order to get a powerful tool it is necessary to develop an epistemologically appropriate language to describe proofs, for which a large set of examples should be used as a testbed. We present some ideas in this direction.

Keywords

analogy theorem proving proof plans abstract description 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Heinrich Behnke, Reinhold Remmert, Hans-Georg Steiner, Horst Tietz (Edts.) (1964), “Mathematik 1” Fischer Taschenbuch Verlag, Frankfurt.Google Scholar
  2. [2]
    Bishop Brock, Shaun Cooper, William Pierce (1988), “Analogical Reasoning and Proof Discovery” Proc. of the 9th CADE, Argonne Illinois, LNCS 310, Edts. E. Lusk & R. Overbeek, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  3. [3]
    Alan Bundy (1983), “The Computer Modelling of Mathematical Reasoning” Academic Press, London.Google Scholar
  4. [4]
    Alan Bundy (1988), “The Use of Explicit Plans to Guide Inductive Proofs” Proc. of the 9th CADE, Argonne Illinois, LNCS 310, Edts. E. Lusk & R. Overbeek, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  5. [5]
    Peter Deussen (1971), “Halbgruppen und Automaten” Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  6. [6]
    Norbert Eisinger, Hans Jürgen Ohlbach (1987), “The Markgraf Karl Refutation Procedure (MKRP)” Proc. of the 8th CADE, Oxford, England, LNCS 230, Edt. J. Siekmann, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  7. [7]
    Richard P. Feynman (1987), “Sie belieben wohl zu scherzen, Mr. Feynman!” Piper, München, german translation of: “Surely You're Joking, Mr. Feynman!”, Norton, New York, London, 1985.Google Scholar
  8. [8]
    T. Gergely, K.P. Vershinin (1985), “Natural Mathematical Texts vs. Programs” in Mathematical Methods of Specification and Synthesis of Software Systems '85, Proc. of the International Spring School Wendisch-Rietz, GDR, LNCS 215, Edt. W. Bibel & K.P. Jantke, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  9. [9]
    Russell Greiner (1988), “Learning by Understanding Analogies” Artificial Intelligence 35 81–125.Google Scholar
  10. [10]
    Jacques Hadamard (1945), “The Psychology of Invention in the Mathematical Field” Princeton University Press, reprinted 1954 by Dover Publication, New York.Google Scholar
  11. [11]
    Rogers P. Hall (1989), “Computational Approaches to Analogical Reasoning: A Comparative Analysis” Artificial Intelligence 39 39–120.Google Scholar
  12. [12]
    Karl Mark G Raph (1984), “The Markgraf Karl Refutation Procedure” Memo-SEKI-MK-84-01, Fachbereich Informatik, Universität Kaiserslautern.Google Scholar
  13. [13]
    Barry Mitchell (1965), “Theory of Categories” Academic Press, New York, London.Google Scholar
  14. [14]
    Allen Newell (1981), “The Heuristic of George Polya and its Relation to Artificial Intelligence” Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvanian 15213; CMU-CS-81-133, also to appear in R.Groner, M.Groner and W.F.Bishoof (Eds.), Methods of Heuristics, Hillsdale, MJ: Lawrence Erlbaum.Google Scholar
  15. [15]
    George Pólya (1949), “How to Solve It” Princeton University Press, Princeton, New Jersey.Google Scholar
  16. [16]
    George Pólya (1954), “Mathematics and Plausible Reasoning” Princeton University Press, Princeton, New Jersey.Google Scholar
  17. [17]
    Boto von Querenburg (1979), “Mengentheoretische Topologie” 2.Aufl., Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  18. [18]
    Helmut Thiele (1986), “A Model Theoretic Oriented Approach to Analogy” Proc. of the International Workshop on Analogical and Inductive Inference, Wendisch-Rietz, GDR, LNCS 265, Edt. K.P. Jantke, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  19. [19]
    Bartel L. van der Waerden (1964), “Wie der Beweis der Vermutung von Baudet gefunden uurde” Abh. Math. Sem. Univ. Hamburg 28.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Manfred Kerber
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaisersaluternWest Germany

Personalised recommendations