Advertisement

Inductive inference up to immune sets

  • Rūsinš Freivalds
  • Juris Vīksna
Submitted Papers Inductive Inference I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 397)

Abstract

We consider approximate in the limit of Gödel numbers for total recursive functions. The set of possible errors is allowed to be infinite but “effectively small”. The latter notion is precise in several ways, as “immune”, “hyperimmune”, “hyperhyperimmune”, “cohesive”, etc. All the identification types considered turn out to the different.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arslanov M.M.Two theorems on recursively enumerable sets. — Algebra i Logika, 1968, v.7, No. 3, p.4–8 (Russian).Google Scholar
  2. 2.
    Barzdin J.M. Two theorem on the limiting synthesis of functions. Latvii gosudarst. Univ. Ucenye Zapiski, 1974, v.210, p.82–88.Google Scholar
  3. 3.
    Case J., and Smith C. Anomaly hierarchies of machanized inductive inference. — Proc. 10th STOc, ACM, 1978, p.314–319.Google Scholar
  4. 4.
    Case J., and Smith C. Comparison of identification criteria for machine inductive inference. — Theoretical Computer Science, 1983, v.25, p.193–220.Google Scholar
  5. 5.
    Freivald R. On the limit synthesis of numbers of general recursive functions in various computable numerations. — Soviet Math. Doklady, 1974, v.15, No.6, p.1681–1683.Google Scholar
  6. 6.
    Freivalda R., and Kinber E.B. Criteria of distinction among limit identification types. — “Sintez, testirovanie i otladka programm”. Proc. USSR Nacional Symposium, Riga, 1981, p.128–129 (Russian).Google Scholar
  7. 7.
    Pitt L. A characterization of probabilistic inference. — of the 25th Annual Symposium on Foundations of Comp.Sc., 1984, p.485–497.Google Scholar
  8. 8.
    Podnieks K. Computing various concepts of function prediction.Latvii gosudarst. Univ. Ucenye Zapiski, 1974, v.210, p.68–81.Google Scholar
  9. 9.
    Rogers H.Jr. Theory of recursive Functions and Effective Computability. MIT Press, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rūsinš Freivalds
    • 1
  • Juris Vīksna
    • 1
  1. 1.Computing CenterLatvian State UniversityRīgaUSSR

Personalised recommendations