Advertisement

On residuated approximations

  • H. Andréka
  • R. J. Greechie
  • G. E. Strecker
Part 3: Categorical Aspects From Topology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 393)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    G. Birkhoff, Lattice Theory, Vol. XXV, AMS Colloquium Publications 1967.Google Scholar
  2. [BJ]
    T.S. Blyth and M.F. Janowitz, Residuation Theory, Pergamon Press, Oxford, 1972.Google Scholar
  3. [C]
    G.D. Crown, “Projectives and injectives in the category of complete lattices with residuated mappings”, Math. Ann. 187, (1970) 295–299.Google Scholar
  4. [GH]
    G. Gierz, K.H. Hofmann, K. Keimal, J.D. Lawson, M. Mislove, and D.S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin 1980.Google Scholar
  5. [H]
    G. Herden, “Some aspects of clustering functions”, SIAM J. Alg. Disc. Math. 5, (1984) 101–116.Google Scholar
  6. [HH]
    H. Herrlich and M. Hušek, “Galois Connections”, Mathematical Foundations of Programming Semantics, Manhattan, KS, 1985, Lecture Notes in Computer Science 239, Springer-Verlag, Berlin 1986.Google Scholar
  7. [J1]
    M.F. Janowitz, “An order-theoretic model for cluster analysis”, SIAM J. Appl. Math. 34, (1978) 55–72.Google Scholar
  8. [J2]
    M.F. Janowitz, “An order-theoretic foundation for automatic classification”, preprint.Google Scholar
  9. [J3]
    M.F. Janowitz, “An order-theoretic model for numerical taxonomy”, preprint.Google Scholar
  10. [J4]
    M.F. Janowitz, “Working Report: Seminar on Distribution Function Clustering”, preprint.Google Scholar
  11. [MS]
    A. Melton, D.A. Schmidt, G.E. Strecker “Galois Connections and Computer Science Applications”, Proceedings of the Summer Workshop on Category Theory and Computer Programming, Guildford, U.K., 1985, Lecture Notes in Computer Science 240, Springer-Verlag, Berlin, 1985.Google Scholar
  12. [P]
    G. Pickert, “Bemerkungen über Galois-Verbindungen”, Archiv Math. 3, (1952) 285–289.Google Scholar
  13. [S]
    D. Scott “Continuous Lattices”, Lecture Notes in athematics 274 pp. 97–136, Springer-Verlag, Berlin 1972.Google Scholar
  14. [SS]
    B. Schweizer and A. SklarProbabalistic Metric Spaces, North Holland, Amsterdam, 1983.Google Scholar
  15. [W]
    P. Wegner “Programming language semantics”, Formal Semantics of Programming Languages, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 149–248.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Andréka
    • 1
  • R. J. Greechie
    • 2
  • G. E. Strecker
    • 2
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of MathematicsKansas State UniversityManhattanU.S.A.

Personalised recommendations