The construct PRO of projection spaces: its internal structure

  • Horst Herrlich
  • Hartmut Ehrig
Part 3: Categorical Aspects From Topology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 393)


The construct PRO (resp. PROS) of (separated) projection spaces and projection morphisms is shown to have limits and colimits, free objects, powerobjects, and objects representing (extremal) partial morphisms. These structures are exhibited explicitly.

AMS Subj. Class.

18 B 25 18 C 05 68 B 15 

Key words

Projection space free object cartesian closed representation of (extremal) partial morphisms (quasi) topos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bergstra and J. Klop, Algebra of Communicating Processes, Proc. CWI Symp. Math. and Comp. Sci., CWI Monographs I Series, North Holland 1986, 89–138Google Scholar
  2. [2]
    C. Dimitrovici, H. Ehrig, M. Große-Rhode, and C. Rieckhoff, Projektionsräume und Projectionsalgebren: Eine Algebraisierung von ultrametrischen Räumen, Technical Report Nr. 87-7, TU Berlin 1987Google Scholar
  3. [3]
    E. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, D. Dimitrovici, and M. Große-Rhode, Algebraic Data Type and Process Specification Based on Projection Spaces, Technical Report 87-8, TU Berlin 1987Google Scholar
  4. [4]
    H. Ehrig, and B. Mahr, Fundamental of Algebraic Specification 1, EATCS-Monographs on Theoretical Comp. Science 6, Springer-Verlag 1985Google Scholar
  5. [5]
    R. Goldblatt, Topoi, The Categorical Analysis of Logic, North Holland 1984Google Scholar
  6. [6]
    G. Grätzer, Universal Algebra, Van Nostrand 1968Google Scholar
  7. [7]
    M. Große-Rhode, Categorical constructions for parameterized data type and process specifications using projection algebras, these ProceedingsGoogle Scholar
  8. [8]
    H. Herrlich, Categorical Topology 1971–1981, General Topology and its Relations to Modern Analysis and Algebra V, Proc. Fifth Prague Topol. Symp. 1981, Heldermann Verlag 1983, 279–383Google Scholar
  9. [9]
    H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon 1973, 2nd ed. Heldermann Verlag 1979Google Scholar
  10. [10]
    J. Penon, Sur les quasi-topos, Cahiers Top. Geom. Diff. 18 (1977), 181–218Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Horst Herrlich
    • 1
  • Hartmut Ehrig
    • 2
  1. 1.Fachbereich Mathematik/InformatikUniversität BremenBremen 33Fed. Rep. Germany
  2. 2.Fachbereich InformatikTechn. Universität BerlinBerlin 10Fed. Rep. Germany

Personalised recommendations