Skip to main content

Geometric reasoning in motion planning

  • Conference paper
  • First Online:
Geometry and Robotics (GeoRob 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 391))

Included in the following conference series:

Abstract

Automating the programming of assembly robots necessitates to develop methods for planning robot motions. In this paper we describe the geometric models and the reasoning techniques we have implemented as part of the SHARP system (SHARP is an automatic robot programming system currently under development at the LIFIA laboratory). We first present which modelling facilities are required for constructing a suitable representation of the robot world. Then, we show how this representation has been used for implementing two classes of reasoning functions: functions aimed at computing collision free trajectories for the robot and its payload, and functions allowing to automatically generate contact based motions under uncertainty constraints (i.e motions involved in grasping and in part-mating operations). Our method for solving the first motion planning problem operates in the configuration space. It is based on two types of techniques aimed at computing the valid ranges of values associated with some selected motion directions, and at constructing and searching a graph representation of the free space. Solving the second planning problem makes it necessary to construct an explicit representation of the involved contacts along with their associated moving constraints. It leads to reason on the morphological properties of the manipulated objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.Ahuja, R.T.Chien, N.Bridwell: “Interference detection and collision avoidance among three dimensional objects”, 1st American Association for Artificial Intelligence conference, Stanford, August 1980.

    Google Scholar 

  2. J.D.Boissonnat: “Stable matching between a hand structure and an object silhouette”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-4, no 6, November 1982.

    Google Scholar 

  3. J.W.Boyse: “Interference detection among solids and surfaces”, CACM, vol.22, nb.1, January 1979.

    Google Scholar 

  4. J.M. Brady et al.: “Robot Motion: Planning and Control, MIT Press, Cambridge, MA, 1982.

    Google Scholar 

  5. R.A.Brooks: “Solving the find-path problem by good representation of free space”, 2nd AAAI conference, Carnegie Mellon University, August 1982.

    Google Scholar 

  6. R.A.Brooks: “Planning collision free motions for pick and place operations”, International Journal of Robotics Research, vol 2, no 4, 1983.

    Google Scholar 

  7. R.C. Brost: “Planning robot grasping motions in the presence of uncertainty”, Technical Report CMU-RI-TR-85-12, Carnegie Mellon University, The Robotics Institute, Pittsburgh, July 1985.

    Google Scholar 

  8. S.J.Buckley: “Planning and teaching compliant motion strategies”, Ph.D Thesis, Artificial Intelligence Laboratory, MIT, January 1987.

    Google Scholar 

  9. R. Chatila: “Système de navigation pour un robot mobile autonome: modélisation et processus décisionnels”, Thèse de Docteur Ingénieur, Toulouse, July 1981.

    Google Scholar 

  10. B.R. Donald: “Motion Planning with Six Degrees of Freedom”, AI-TR-791. Cambridge, Mass.: Massachusetts Institute of Technology Artificial Intelligence Laboratory, 1984.

    Google Scholar 

  11. B. Dufay: “Apprentissage par induction enRobotique: Application à la synthèse de programmes de montage", Thèse de 3ème cycle, INPG, Grenoble, June 1983.

    Google Scholar 

  12. B.Dufay, J.C.Latombe: “An approach to automatic robot programming based on inductive learning”, 1st International Symposium on Robotics Research, Bretton Woods, August 1983.

    Google Scholar 

  13. M.Erdmann: “On motion planning with uncertainty”, AI-TR-810, Artificial Intelligence Laboratory, MIT, 1984.

    Google Scholar 

  14. B.Faverjon: “Obstacle avoidance using anoctree in the configuration space of a manipulator”, IEEE International Conference on Robotics and Automation, Atlanta, March 1984.

    Google Scholar 

  15. B.Faverjon, P.Tournassoud: “A local based method for path planning of manipulators with a high number of degrees of freedom”, IEEE International Conference on Robotics and Automation, Raleigh, April 1987.

    Google Scholar 

  16. R.S. Fearing: “Simplified grasping and manipulation with dextrous robot hands”, AI-Memo-809, Artificial Intelligence Lab., M.I.T., Cambridge, November 1984.

    Google Scholar 

  17. C. Gandon: “Introduction de la compliance dans la programmation des robots”, Thèse de 3ème Cycle, INPG, Grenoble, October 1986.

    Google Scholar 

  18. L.Gouzenes: “Strategies for solving collision-free trajectories problems for mobile and manipulator robots”, International Journal of Robotics Research, vol 3, no 4, 1984.

    Google Scholar 

  19. H.Hanafusa, H.Asada: “Stable prehension by a robot hand with elastic fingers”, 7th International Symposium on Industrial Robots Tokyo, October 1977.

    Google Scholar 

  20. H.Hanafusa, H.Asada: “A robot hand with elastic fingers and its application to assembly process”, IFAC Symposium on Information and Control Problems in Manufacturing Technology, Tokyo, 1977.

    Google Scholar 

  21. A.Ijel: “Inférence de l'équilibre d'un objet à partir d'une représentation des contacts”, Convention IA 89, Paris, January 1989.

    Google Scholar 

  22. K. Ikeuchi et al.: “Determining grasp points using photometric stereo and the PRISM binocular stereo system”, AI-Memo-772, Artificial Intelligence Lab., M.I.T., Cambridge, August 1984.

    Google Scholar 

  23. M.Joyal, P.Provost: “Statique”, Masson & Cie, 1966.

    Google Scholar 

  24. O.Khatib: “Commande dynamique dans l'espace opérationnel des robots manipulateurs en présence d'obstacles”, Thèse de Docteur-Ingénieur, Ecole Nationale Supérieure de l'Aéronautique et de l'Espace, Toulouse, December 1980.

    Google Scholar 

  25. C.Laugier: “A program for automatic grasping of objects with a robot arm”, 11th International Symposium on Industrial Robots, Tokyo, October 1981.

    Google Scholar 

  26. C.Laugier, B.Dufay: “Geometrical reasoning in automatic grasping and contact analysis”, PROLAMAT 82, Leningrad, May 1982.

    Google Scholar 

  27. C.Laugier, J.Pertin: “Automatic grasping: a case study in accessibility analysis”, Published in “Advanced Software in Robotics”, edited by A.Danthine and M.Géradin, North Holland, 1984.

    Google Scholar 

  28. C.Laugier: “Influence du raisonnement géométrique dans le choix d'une prise d'objet”, Rapport de Recherche IMAG no. 414, December 1983.

    Google Scholar 

  29. C.Laugier, F.Germain: “An adaptative collision-free trajectory planner”, '85 International Conference on Advanced Robotics, Tokyo, September 1985.

    Google Scholar 

  30. C.Laugier, J.Troccaz: “S.H.A.R.P.: A system for automatic programming of manipulation robots”, 3rd International Symposium of Robotics Research, Gouvieux, October 1985.

    Google Scholar 

  31. C.Laugier, P.Theveneau: “Planning sensor-based motions for part-mating using geometric reasoning”, ECAI'86, Brighton, July 1986.

    Google Scholar 

  32. C.Laugier: “Raisonnement géométrique et méthodes de décision en robotique. Application à la programmation automatique des robots”, Thèse d'Etat, INPG, Grenoble, December 1987.

    Google Scholar 

  33. L.I.Liebermann, M.A.Wesley: “AUTOPASS: an automatic programming system for computer controlled mechanical assembly”, IBM Journal of Research and Development, July 1977.

    Google Scholar 

  34. T. Lozano-Perez: “The design of a mechanical assembly system”, AI-TR-397, M.I.T. Artificial Intelligence Laboratory, Cambridge, December 1976.

    Google Scholar 

  35. T.Lozano-Perez, M.A.Wesley: “An algorithm for planning collision-free paths among polyhedral obstacles”, CACM, Vol.22, nb.1, October 1979.

    Google Scholar 

  36. T.Lozano-Perez: “Automatic planning of manipulator transfer movements”, IEEE Transactions on System, Man and Cybernetics, SMC-11, no. 10, October 1981.

    Google Scholar 

  37. T.Lozano-Perez, M.T.Mason, R.H.Taylor: “Automatic synthesis of fine-motions strategies for robots”, 1st International Symposium of Robotics Research, Bretton Woods, August 1983.

    Google Scholar 

  38. T.Lozano-Perez: “Spatial planning: a configuration space approach”, IEEE Transactions on Computers, vol. C-32, no. 2, February 1983.

    Google Scholar 

  39. T.Lozano-Perez: “Motion planning for simple manipulator robots”, 3rd International Symposium of Robotics Research Gouvieux, October 1985.

    Google Scholar 

  40. T.Lozano-Perez, R.A.Brooks: “An approach to automatic robot programming”, AI Memo 842, Artificial Intelligence Laboratory, M.I.T., April 1985.

    Google Scholar 

  41. T.Lozano-Perez et al.: “Handey: a robot system that recognizes, plans and manipulates”, IEEE International Conference on Robotics and Automation, Raleigh, April 1987.

    Google Scholar 

  42. D.M.Lyons: “A simple set of grasps for a dextrous hand”, IEEE International Conference on Robotics and Automation, St Louis, March 1985.

    Google Scholar 

  43. M.T.Mason: “Compliance and force control for computer controlled manipulators”, IEEE International Conference on Robotics and Automation, June 1981.

    Google Scholar 

  44. M.T.Mason: “Manipulator grasping and pushing operations”, AI-TR-690, Artificial Intelligence Lab., M.I.T., Cambridge, June 1982.

    Google Scholar 

  45. E.Mazer: “HANDEY: Un modèle de planificateur pour la programmation automatique des robots”, Thèse d'Etat, INPG, Grenoble, December 1987.

    Google Scholar 

  46. N.J.Nilsson: “Principles of Artificial Intelligence”, Tioga, Palo Alto, 1980.

    Google Scholar 

  47. E.G.Powell: “An efficient collision warning algorithm for robot arms”, 2nd American Association for Artificial Intelligence Conference, Carnegie-Mellon, August 1982.

    Google Scholar 

  48. C.Reboulet, A.Robert: “Hybrid control of a manipulator with an active compliant wrist”, 3rd International Symposium on Robotics Research, Gouvieux, October 1985.

    Google Scholar 

  49. J.T. Schwartz, M. Sharir: “On the piano movers' problem II: General properties for computing topological properties of real algebraic manifolds”, Dep. of Computer Science, Courant Institute of Mathematical Sciences, NYU, Report 41, February 1982.

    Google Scholar 

  50. R.H. Taylor: “Synthesis of manipulator control programs from task-level specifications”, AIM 228, Stanford Artificial Intelligence Laboratory, July 1976.

    Google Scholar 

  51. P.Theveneau: Planification de mouvements fins de montage dans un système de programmation automatique de robots”, Thèse de l'Institut National Polytechnique de Grenoble, 1988 (to appear).

    Google Scholar 

  52. D.J.Todd: “A method for grasping randomly oriented objects using touch sensing”, Artificial Intelligence Lab., Queen Mary College, Univ. of London, June 1981.

    Google Scholar 

  53. J.Troccaz: “S.M.G.R.: a geometric and relational modeller for robotics”, International Conference on Advanced Robotics, Tokyo, September 1985.

    Google Scholar 

  54. J.Troccaz: “Modélisation du raisonnement géométrique pour la programmation des robots”, Thèse de l'Institut National Polytechnique de Grenoble, April 1986.

    Google Scholar 

  55. J.Troccaz: “On-line automatic robot programming: a case study in grasping”, IEEE Conference on Robotics and Automation, Raleigh, April 1987.

    Google Scholar 

  56. S.M.Udupa: “Collision detection and avoodance in computer controlled manipulators”, Proceedings IJCAI 77, Cambridge, August 1977.

    Google Scholar 

  57. J.M.Valade: “Raisonnement géométrique et synthèse de trajectorie d'assemblage”, Thèse de Docteur-Ingénieur, Université Paul Sabatier, Laboratoire d'Automatique et d'Analyse des Systèmes, Toulouse, January 1985.

    Google Scholar 

  58. D.E.Withney: “Force feedback control of manipulator fine motions”, Journal of Dynamic Systems Measurement and Control, June 1977.

    Google Scholar 

  59. M.Wingham: “Planning how to grasp objects in a cluttered environment”, M. Phil. Thesis, University of Edinburgh, Scotland, 1977.

    Google Scholar 

  60. J.D.Wolter, R.A.Volz, A.C.Woo: “Automatic generation of gripping positions”, RSD-TR-2-84, Center for Robotics and Integrated Manufacturing, Robot Systems Division, Ann Arbor (Michigan), February 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. -D. Boissonnat J. -P. Laumond

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laugier, C. (1989). Geometric reasoning in motion planning. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-51683-2_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51683-5

  • Online ISBN: 978-3-540-46748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics