Galleries, light matchings and visibility graphs

  • Jurek Czyzowicz
  • Ivan Rival
  • Jorge Urrutia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 382)


Line Segment Maximum Match Dual Graph Visibility Graph Convex Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Chvátal (1975) A combinatorial theorem in plane geometry, J. Comb. Theory, Ser. B 18, 39–41.Google Scholar
  2. S. Fisk (1978) A short proof of Chvátal's watchman theorem, J. Comb. Theory, Ser. B 24, 374.Google Scholar
  3. S. Foldes, I. Rival and J. Urrutia (1988) Light sources, obstructions and spherical orders, University of Ottawa Technical Report TR-88-23.Google Scholar
  4. R. Honsberger (1986) Mathematical Gems II, Math. Assoc. of America, 104–110.Google Scholar
  5. J. Kahn, M. Klawe and D. Kleitman (1973) Traditional galleries required fewer watchmen, SIAM J. Alg. Disc. Math. 4, 194–206.Google Scholar
  6. J. O'Rourke (1987) Art Gallery Theorems and Algorithms, Oxford University Press.Google Scholar
  7. R.E. Tarjan and C.J. Van Wyk (1988) An O(n log log n)-time algorithm for triangulating simple polygons, SIAM J. Com. 17, 143–178.Google Scholar
  8. J. Urrutia and J. Zaks (1988) Illuminating convex sets on the plane. In preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Ivan Rival
    • 2
  • Jorge Urrutia
    • 2
  1. 1.Département d'InformatiqueUniversité du Québec à HullHull
  2. 2.Department of Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations