Linear algorithms for parity path and two path problems on circular-arc graph

  • A. Srinivasa Rao
  • C. Pandu Rangan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 382)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [AH 87]
    A. Apostolico and S.E. Hambrusch, Finding Maximum Cligues On Circular-arc Graphs, Infom. Proc. Lett., 26(1987), pp.209–215.CrossRefGoogle Scholar
  2. [AS 89]
    A. Srinivasa Rao, Efficient Sequential and Parallel Algorithms on Interval and Circular-arc Graphs, M.S. Thesis, Dept. of Computer Science and Engg, Indian Inst of Tech, Madras, India, 1989.Google Scholar
  3. [B 85]
    M.A. Bonuccelli, Dominating Sets And Domatic Number Of Circular-arc Graphs, Discrete Appl. Math., 12(1985), pp.203–213.CrossRefGoogle Scholar
  4. [C 80]
    G.A. Cypher, The k Paths Problem, Ph.D. Dissertation, Yale University, 1980.Google Scholar
  5. [G 80]
    M.C. Golumbic, Algorithmic Graph Theory And Perfect Graphs (Academic press, New York, 1980)Google Scholar
  6. [GH 64]
    P.C. Gilmore and A.J. Hoffman, A Characterization Of Comparability Graphs And Interval Graphs, Canad.J.Math., 16(1964), pp.539–548.Google Scholar
  7. [GH 88]
    M.C. Golumbic and Peter L. Hammer, Stability In Circulararc Graphs, J. Algorithms, 9(1988), pp.314–320.CrossRefGoogle Scholar
  8. [GJ 79]
    M.R. Gary and D.S. Johnson, Computers and Intractability: A Guide To The Theory Of NP-Completeness (Freeman, San Francisco, CA, 1979).Google Scholar
  9. [H 85]
    Wen-Lian Hsu, Maximum Weight Clique Algorithms For Circular-arc Graphs And Circle Graphs, SIAM J. Comput., 14(1985), pp.224–231.CrossRefGoogle Scholar
  10. [H 87]
    Wen-Lian Hsu, Recognising Planar Perfect Graphs, J. Assoc. Comput. Mach., 34(1987), pp.255–288.Google Scholar
  11. [K 85]
    J.M. Keil, Finding Hamiltonian Circuits In Interval Graphs, Inform. Proc. Lett., 20(1985), pp. 201–206.Google Scholar
  12. [KSP 88]
    S.V. Krishnan, Seshadri and C. Pandu Rangan, A new Linear Algorithm For The Two Path Problem On Chordal Graphs, Eighth International Conference on Foundations of Software Technology & Theoretical Computer Science, Pune, India, Dec 21–23, 1988.Google Scholar
  13. [MN 88]
    S. Masuda and K. Nakajima, An Optimal Algorithm For Finding a Maximum Independent Set Of a Circular-arc Graph, SIAM J. Comput., 17(1988), pp.41–52.CrossRefGoogle Scholar
  14. [PS 78]
    Y. Perl and Y. Shiloach, Finding Two Disjoint Paths Between Two Pairs Of Vertices In a Graph, J. Assoc. Comput. Mach., 25(1978), pp.1–9.Google Scholar
  15. [RP 88]
    G. Ramalingam and C. Pandu Rangan, A Unified Approach To Domination Problems On Interval Graphs, Inform. Proc. Lett., 27(1988), pp.271–274.Google Scholar
  16. [S 80]
    Y. Shiloach, A Polynomial Solution To The Undirected Two Path Problem, J. Assoc. Comput. Mach., 27(1980), pp.445–456.Google Scholar
  17. [T 80]
    A. Tucker, An Efficient Test For Circular-arc Graphs, SIAM J. Comput., 9(1980), pp.1–24.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. Srinivasa Rao
    • 1
  • C. Pandu Rangan
    • 1
  1. 1.Dept. of Computer Scince and EngineeringIndian Institute of technologyMadrasIndia

Personalised recommendations